This paper proposes a high performance three-level inverter Neutral Point Clamped (NPC) structure for photovoltaic system. The proposed configuration which can boost the low voltage of photovoltaic (PV) array, can als...This paper proposes a high performance three-level inverter Neutral Point Clamped (NPC) structure for photovoltaic system. The proposed configuration which can boost the low voltage of photovoltaic (PV) array, can also convert the photovoltaic DC power into high quality AC power. Attention has been paid to the problem of neutral point potential variation. In this way, a Direct Torque Control (DTC) technique has been applied and the estimated value of the Neutral Point Potential (NPP) is used, which is calculated by motor currents. This control strategy uses the redundancy presented by the inverter for selecting appropriate switching state through a switching table to achieve the control of NPP. This study shows the effect of the stability problem of the DC voltages and good static and dynamic performances were obtained in simulation of the proposed cascade “photovoltaic cell-three-level NPC VSI-induction motor”.展开更多
The interaction between grid-connected inverters and the grid may cause stability issues,and compromise the reliable operation of the inverters.This study investigates the stability of a three-level neutral point clam...The interaction between grid-connected inverters and the grid may cause stability issues,and compromise the reliable operation of the inverters.This study investigates the stability of a three-level neutral point clamped(NPC)inverter connected to the grid using impedance-based methods.Because the impedance model of a three-phase three-level NPC inverter has not yet been reported,this study fills the literature gap by analyzing the influence of three-level DC-side neutral point control on the impedance characteristics.By fully considering the DC bus dynamics and DC voltage control loop,and the current loop and phase-locked loop(PLL),the admittance model of a three-phase three-level NPC inverter is established and verified by simulation.Additionally,in the stability analysis of a threelevel NPC inverter grid-connected system,the frequency coupling introduced by the PLL and DC bus dynamics is included with the help of an established admittance model.The stability of the grid-connected system under different grid short circuit ratios(SCR)and operating power levels is analyzed according to the Nyquist stability criterion.The experimental results revealed that the established impedance model of the three-phase three-level NPC inverter can properly represent the stability of this system.展开更多
This paper presents a novel and efficient control scheme for unified power quality conditioner (UPQC) based on three-level neutral point clamped (NPC) inverter using fuzzy logic techniques. The proposed UPQC is ca...This paper presents a novel and efficient control scheme for unified power quality conditioner (UPQC) based on three-level neutral point clamped (NPC) inverter using fuzzy logic techniques. The proposed UPQC is capable of mitigating source current harmonics and compensate all voltage disturbances such as voltage sags, swells, unbalances and harmonics. It is designed by the integration of series and shunt active filters (AFs) sharing a common DC bus capacitor. The DC voltage is maintained constant using proportional integral voltage controller. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt active power filters (APFs) and the power reactive theory (p-q theory) for series APFs. The shunt and series APF reference signals derived from the control algorithm and sensed signals are injected in two controllers to generate switching signals. To improve the UPQC capability, fuzzy logic techniques are introduced to control the series APF. The performances of the proposed UPQC system are evaluated in terms of power factor correction, mitigation of voltage or current harmonics and all other voltage disturbances compensation using Matlab-Simulink software and SimPowerSystem toolbox. The simulation results illustrate the performance of the proposed UPQC at the common connection point of the nonlinear load to improve the power energy quality.展开更多
This article presents the direct torque control (DTC) strategy for the doubly fed induction motor (DFIM) connected to two three-level voltage source inverters (3LVSIs) with neutral point clamped (NPC) structure. This ...This article presents the direct torque control (DTC) strategy for the doubly fed induction motor (DFIM) connected to two three-level voltage source inverters (3LVSIs) with neutral point clamped (NPC) structure. This control method allows to reduce the torque and flux ripples as well as to optimize the total harmonic distortion (THD) of motor currents. The use of 3LVSI increases the number of generated voltage, which allows improving the quality of its waveform and thus improves the DTC strategy. The system modeling and control are implemented in Matlab/Simulink environment. The analysis of simulation results shows the better performances of this control, especially in terms of torque and flux behavior, compared to conventional DTC.展开更多
The output current harmonic distortion of a three-level inverter is less than the traditional twolevel inverter.The voltage stress of the semiconductor switch is low.A neutral point potential drift control method is p...The output current harmonic distortion of a three-level inverter is less than the traditional twolevel inverter.The voltage stress of the semiconductor switch is low.A neutral point potential drift control method is proposed to solve the problem of the neutral point potential drift of the three-level inverter.The interaction mechanism between the neutral point potential and the space voltage vector is presented.The small vector output by the inverter is found to be the root cause of the midpoint potential drift.It is found that the fluctuation of the midpoint potential could be suppressed by increasing the capacitance value of the inverter bus voltage stabilizing capacitor.Furthermore,it inhibits the fluctuation of the midpoint potential.The experimental results verify the efficiency and precision of the proposed method.展开更多
In the traditional three-level space vector pulse width modulation(SVPWM)algorithm,the sector judgment is computationallycomplex since the sector is divided into triangles and hexagons.In addition,the switching freque...In the traditional three-level space vector pulse width modulation(SVPWM)algorithm,the sector judgment is computationallycomplex since the sector is divided into triangles and hexagons.In addition,the switching frequency is high becausethe seven-segment switching sequence is adopted.For this reason,a new SVPWM control algorithm for three-level inverteris proposed,in which the sector judgment is simplified by dividing the sector into quasi hexagons?and the new four-segmentswitching sequence is adopted to reduce the switching frequency.Simulation results show that the total harmonic distortiongrows down with the switching frequency decreasing,moreover,the algorithm runtime is also decreased.展开更多
Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model...Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model predictive flux control(MPFC)method is proposed.First,establish a mathematical model between the motor torque and the stator flux linkage according to the mathematical equations of PMSM.Thus,the control of the motor torque and stator flux linkage in the MPTC is transformed into the control of a single stator flux linkage vector,omitting the cumbersome weight setting process in the traditional MPTC.The midpoint potential control strategy is proposed,which uses the characteristics of redundant small vectors to balance the midpoint potential.After that,a fine-division strategy is proposed,which effectively reduces the number of candidate vectors and the computational burden of the system.Finally,the proposed MPFC is compared with MPTC by simulation.The results show that the proposed fine-division MPFC effectively reduces the system calculation,and has the advantages of simple principle and better dynamic and steady-state control performance.The feasibility of the control strategy is verified.展开更多
Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by ...Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme.展开更多
Capacitor voltage imbalance is a significant problem for three-level inverters.Due to the mid-point modulation of these inverter topologies,the neutral point potential moves up or down depending on the neutral point c...Capacitor voltage imbalance is a significant problem for three-level inverters.Due to the mid-point modulation of these inverter topologies,the neutral point potential moves up or down depending on the neutral point current direction creating imbalanced voltages among the two capacitors.This imbalanced capacitor voltage causes imbalanced voltage stress among the semiconductor devices and causes increase output voltage and current harmonics.This paper introduces a modified voltage balancing strategy using two-level space vector modulation.By decomposing the three-level space vector diagram into two-level space vector diagram and redistributing the dwell times of the two-level zero space vectors,the modified voltage balancing method ensures minimal NP voltage ripple.Compared to the commonly used NP voltage control method(using 3L SVM[9]),the proposed modified NP voltage control method offers a slightly higher neutral-point voltage ripple and output voltage harmonics but,it has much lower switching loss,code size and execution time.展开更多
This paper presents the design and implementation of a 3 kVA three-phase active T-type neutral-point clamped (NPC) inverter with GaN power devices for low-voltage microgrids. The designed inverter is used in a battery...This paper presents the design and implementation of a 3 kVA three-phase active T-type neutral-point clamped (NPC) inverter with GaN power devices for low-voltage microgrids. The designed inverter is used in a battery-based energy system (BESS) for power conversion optimization in applications to low-voltage microgrids. A modular design method has been developed for the design and implementation of the AT-NPC inverter. Experimental verification has been carried out based on a 3-kW three-phase T-Type NPC grid-connected inverter. FPGA based digital control technique has been developed for the current control of the three-level three-phase grid inverter. A maximum efficiency of 98.49% has been achieved within a load range from 50% to 75%.展开更多
The single-phase three-level voltage source inverter based on wavelet modulation(WM) is proposed.The WM technique is based on constructing a nondyadic-type multi-resolution analysis(MRA),which supports sampling contin...The single-phase three-level voltage source inverter based on wavelet modulation(WM) is proposed.The WM technique is based on constructing a nondyadic-type multi-resolution analysis(MRA),which supports sampling continuous-time sinusoidal signals in a nonuniform recurrent manner,and then reconstructing it by using inverter switching actions. In order to further improve the output voltage waveform and reduce harmonic distortion,the wavelet modulation is used to three-level inverter. The high magnitude of fundamental component and significantly reduced harmonic contents of the inverter output voltage can be achieved by using WM in the single-phase three-level voltage source inverter. Furthermore,the WM algorithm is implemented by using only one element government(EV) in DSP. The simulated and experimental results prove the accuracy and feasibility of the WM scheme for single-phase three-level voltage source inverter.展开更多
The topology of diode neutral-point-clamped(NPC)three-level inverter is prone to neutral-point potential offset.When the sum of three-phase current is zero,the virtual space vector pulse width modulation(VSVPWM)scheme...The topology of diode neutral-point-clamped(NPC)three-level inverter is prone to neutral-point potential offset.When the sum of three-phase current is zero,the virtual space vector pulse width modulation(VSVPWM)scheme does not cause the neutral-point voltage offset,but it lacks the ability to balance the deviation.For this reason,a neutral-point potential control strategy combining virtual space vector modulation and loop width control is proposed.The neutral-point potential is balanced by introducing the distribution factor for the regions with redundant vectors.For other regions,the potential is controlled by selecting a suitable switching sequence.Meanwhile,the effect on the virtual vector modulation is reduced within the loop width by setting an appropriate loop width,thereby improving the balance effect.The simulation results show that the proposed method has a strong ability to control the offset and has excellent potential balance performance under the conditions of balanced load,unbalanced load and asymmetric capacitance parameters.展开更多
A new ride through strategy is introduced in a three-level dual Z-source inverter, for isolation under semiconductor switching failure condition. Here the output will have no significant decrease in the amplitude and ...A new ride through strategy is introduced in a three-level dual Z-source inverter, for isolation under semiconductor switching failure condition. Here the output will have no significant decrease in the amplitude and quality. Instead of diodes, the triacs are added to the inverter source ends, as it can perform a bidirectional power transfer also it can operate well in both low and high voltage operating conditions. The faulted part can be isolated by simply altering the firing pulses for turning on/off the triacs using the carrier based SPWM technique and resulting in a boosting output with zero common mode voltage. Consequently, it forms a common floating point or null point with a zero common mode voltage. It is experimentally verified by using MATLAB, and digital oscilloscope.展开更多
Cascaded H-Bridge inverter has been researched for the past two decades, but there are no explicit guidelines on how one can realize a cascaded NPC (neutral-point-clamped)/H-Bridge inverter. Past research has also c...Cascaded H-Bridge inverter has been researched for the past two decades, but there are no explicit guidelines on how one can realize a cascaded NPC (neutral-point-clamped)/H-Bridge inverter. Past research has also concentrated on realizing a five-level NPC/H-Bridge inverter. This fails to address the principle of realizing a general cascaded N-level NPC/H-Bridge PWM inverter. This paper proposes an improved topology for achieving a nine-level cascaded NPC (neutral-point-clamped) H-Bridge inverter with reduced harmonic content. This new proposed topology requires a lesser number of separate dc sources as compared to conventional cascaded H-Bridge inverter. The whole system is considered as having four three level legs having two positive and two negative legs. By properly phase shifting the modulating wave and carriers, a nine-level output is achieved. A theoretical harmonic analysis of the proposed inverter is carried out based on double Fourier principle. The theoretical results are verified through MATLAB simulation.展开更多
The multiplicity of vector combinations for vectors of combined three-level inverters plays an important role, when deciding on the modulation scheme, to obtain minimum switching per inverter vector change, as describ...The multiplicity of vector combinations for vectors of combined three-level inverters plays an important role, when deciding on the modulation scheme, to obtain minimum switching per inverter vector change, as described in the next Section. This is not possible with reduced common-mode three-level inverter structure, obtained with a five-level cascaded H-bridge configuration, as the space vectors locations do not exhibit multiplicity. Moreover, the proposed configuration requires only two power supplies, whereas the scheme with the five-level H-bridge configuration requires six isolated power supplies.展开更多
The multiplicity of vector combinations for vectors of combined three-level inverters plays an important role, when deciding on the modulation scheme, to obtain minimum switching per inverter vector change, as describ...The multiplicity of vector combinations for vectors of combined three-level inverters plays an important role, when deciding on the modulation scheme, to obtain minimum switching per inverter vector change, as described in the next Section. This is not possible with reduced common-mode three-level inverter structure, obtained with a five-level cascaded H-bridge configuration, as the space vectors locations do not exhibit multiplicity. Moreover, the proposed configuration requires only two power supplies, whereas the scheme with the five-level H-bridge configuration requires six isolated power supplies.展开更多
为进一步提高中点电压钳制(neutral point clamped,NPC)H桥级联五电平逆变器的动态响应、降低控制器计算负担的同时确保装置低损耗运行,文中在电压矢量矩形区域分类的基础上,提出一种以满足动态响应和降低开关损耗为目标的两级优化模型...为进一步提高中点电压钳制(neutral point clamped,NPC)H桥级联五电平逆变器的动态响应、降低控制器计算负担的同时确保装置低损耗运行,文中在电压矢量矩形区域分类的基础上,提出一种以满足动态响应和降低开关损耗为目标的两级优化模型预测电压控制策略。首先根据逆变器数学模型和期望电流进行目标电压矢量计算、修正,接着基于矩形区域分类对目标电压矢量进行定位;并以定位后的候选矢量为基础,设计了两级优化目标函数以输出满足要求的最优矢量。仿真和实验结果验证了该方法的有效性,与空间矢量脉宽调制以及传统模型预测电流、电压控制策略相比,该文所研究的两级优化模型预测电压控制策略,在确保逆变器动态响应的前提下既能降低控制器计算负担,还能有效减少器件开关损耗。展开更多
随着新能源和微电网的高速发展,孤岛状态下逆变器的故障穿越能力显得尤为重要。针对现有控制方法下孤岛中点钳位(neutral point clamped,NPC)逆变器故障穿越能力弱的问题,提出基于模型预测控制的孤岛微电网NPC逆变器故障穿越控制方法。...随着新能源和微电网的高速发展,孤岛状态下逆变器的故障穿越能力显得尤为重要。针对现有控制方法下孤岛中点钳位(neutral point clamped,NPC)逆变器故障穿越能力弱的问题,提出基于模型预测控制的孤岛微电网NPC逆变器故障穿越控制方法。通过比较负载电压与参考电压实现故障高速诊断;通过提高故障相参考电流幅值提升故障相电流;通过划定计算扇区、消除冗余计算减少计算量和避免权重系数设计;为保证电能质量以及减小数据测量和算法计算产生的延时,采用两步预测方法对延时进行补偿。在Matlab/Simulink中搭建三相LCL孤岛NPC逆变器仿真模型,仿真结果表明,该控制方法在孤岛微电网正常运行时能够将三相电流THD均值控制在2%以内,发生故障时,对故障相电流THD值控制在4%以内,对非故障相电流THD值控制在1.5%以内,能够有效提升孤岛NPC逆变器的故障穿越能力。展开更多
以中点钳位型H(neutral point clamped H,NPC/H)桥逆变器为对象,研究该拓扑调制策略中存在的算法繁琐、直流侧电容电压波动问题。在分析了NPC/H桥五电平逆变器主电路工作原理的基础上,为简化空间矢量脉宽调制(spacevector pulsewidthmod...以中点钳位型H(neutral point clamped H,NPC/H)桥逆变器为对象,研究该拓扑调制策略中存在的算法繁琐、直流侧电容电压波动问题。在分析了NPC/H桥五电平逆变器主电路工作原理的基础上,为简化空间矢量脉宽调制(spacevector pulsewidthmodulation,SVPWM)算法和抑制低开关频率下逆变器输出畸变,设计了一种基于g-h坐标系的三段式SVPWM算法。该算法开关状态选择灵活,具有开关损耗低、谐波性能好的特点。基于SVPWM算法,分析直流侧电容电压波动原因,根据电流方向和电容电压差,合理选择左、右桥臂的开关状态,平衡电容中点电位。搭建Simulink仿真模型,对比不同开关频率和不同调制度下逆变器输出性能,验证了三段式开关序列在低开关频率工况下的明显优势。基于以数字信号处理器和现场可编程门阵列(digital singnal processor and field-programmable gate array,DSP&FPGA)为控制器的NPC/H桥五电平逆变器实验平台,验证了三段式SVPWM策略和中点电位控制方法的有效性。展开更多
文摘This paper proposes a high performance three-level inverter Neutral Point Clamped (NPC) structure for photovoltaic system. The proposed configuration which can boost the low voltage of photovoltaic (PV) array, can also convert the photovoltaic DC power into high quality AC power. Attention has been paid to the problem of neutral point potential variation. In this way, a Direct Torque Control (DTC) technique has been applied and the estimated value of the Neutral Point Potential (NPP) is used, which is calculated by motor currents. This control strategy uses the redundancy presented by the inverter for selecting appropriate switching state through a switching table to achieve the control of NPP. This study shows the effect of the stability problem of the DC voltages and good static and dynamic performances were obtained in simulation of the proposed cascade “photovoltaic cell-three-level NPC VSI-induction motor”.
基金This work was supported in part by the National Natural Science Key Foundation of China under Grant 51937001the Natural Science Foundation Key Project of Chongqing Province under Grant cstc2019jcyj-zdxmX0005National Grid Project under Grant 5200-201958248A-0-0-00.
文摘The interaction between grid-connected inverters and the grid may cause stability issues,and compromise the reliable operation of the inverters.This study investigates the stability of a three-level neutral point clamped(NPC)inverter connected to the grid using impedance-based methods.Because the impedance model of a three-phase three-level NPC inverter has not yet been reported,this study fills the literature gap by analyzing the influence of three-level DC-side neutral point control on the impedance characteristics.By fully considering the DC bus dynamics and DC voltage control loop,and the current loop and phase-locked loop(PLL),the admittance model of a three-phase three-level NPC inverter is established and verified by simulation.Additionally,in the stability analysis of a threelevel NPC inverter grid-connected system,the frequency coupling introduced by the PLL and DC bus dynamics is included with the help of an established admittance model.The stability of the grid-connected system under different grid short circuit ratios(SCR)and operating power levels is analyzed according to the Nyquist stability criterion.The experimental results revealed that the established impedance model of the three-phase three-level NPC inverter can properly represent the stability of this system.
文摘This paper presents a novel and efficient control scheme for unified power quality conditioner (UPQC) based on three-level neutral point clamped (NPC) inverter using fuzzy logic techniques. The proposed UPQC is capable of mitigating source current harmonics and compensate all voltage disturbances such as voltage sags, swells, unbalances and harmonics. It is designed by the integration of series and shunt active filters (AFs) sharing a common DC bus capacitor. The DC voltage is maintained constant using proportional integral voltage controller. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt active power filters (APFs) and the power reactive theory (p-q theory) for series APFs. The shunt and series APF reference signals derived from the control algorithm and sensed signals are injected in two controllers to generate switching signals. To improve the UPQC capability, fuzzy logic techniques are introduced to control the series APF. The performances of the proposed UPQC system are evaluated in terms of power factor correction, mitigation of voltage or current harmonics and all other voltage disturbances compensation using Matlab-Simulink software and SimPowerSystem toolbox. The simulation results illustrate the performance of the proposed UPQC at the common connection point of the nonlinear load to improve the power energy quality.
文摘This article presents the direct torque control (DTC) strategy for the doubly fed induction motor (DFIM) connected to two three-level voltage source inverters (3LVSIs) with neutral point clamped (NPC) structure. This control method allows to reduce the torque and flux ripples as well as to optimize the total harmonic distortion (THD) of motor currents. The use of 3LVSI increases the number of generated voltage, which allows improving the quality of its waveform and thus improves the DTC strategy. The system modeling and control are implemented in Matlab/Simulink environment. The analysis of simulation results shows the better performances of this control, especially in terms of torque and flux behavior, compared to conventional DTC.
基金the National Natural Science Foundation of China(No.51407007)。
文摘The output current harmonic distortion of a three-level inverter is less than the traditional twolevel inverter.The voltage stress of the semiconductor switch is low.A neutral point potential drift control method is proposed to solve the problem of the neutral point potential drift of the three-level inverter.The interaction mechanism between the neutral point potential and the space voltage vector is presented.The small vector output by the inverter is found to be the root cause of the midpoint potential drift.It is found that the fluctuation of the midpoint potential could be suppressed by increasing the capacitance value of the inverter bus voltage stabilizing capacitor.Furthermore,it inhibits the fluctuation of the midpoint potential.The experimental results verify the efficiency and precision of the proposed method.
基金National Natural Science Foundation of China(No.61261029)
文摘In the traditional three-level space vector pulse width modulation(SVPWM)algorithm,the sector judgment is computationallycomplex since the sector is divided into triangles and hexagons.In addition,the switching frequency is high becausethe seven-segment switching sequence is adopted.For this reason,a new SVPWM control algorithm for three-level inverteris proposed,in which the sector judgment is simplified by dividing the sector into quasi hexagons?and the new four-segmentswitching sequence is adopted to reduce the switching frequency.Simulation results show that the total harmonic distortiongrows down with the switching frequency decreasing,moreover,the algorithm runtime is also decreased.
基金National Natural Science Foundation of China(No.51867012)。
文摘Aiming at the difficulty of setting the weight coefficient in the value function of model predictive torque control(MPTC)for permanent magnet synchronous motor(PMSM)driven by three-level inverter,a fine-division model predictive flux control(MPFC)method is proposed.First,establish a mathematical model between the motor torque and the stator flux linkage according to the mathematical equations of PMSM.Thus,the control of the motor torque and stator flux linkage in the MPTC is transformed into the control of a single stator flux linkage vector,omitting the cumbersome weight setting process in the traditional MPTC.The midpoint potential control strategy is proposed,which uses the characteristics of redundant small vectors to balance the midpoint potential.After that,a fine-division strategy is proposed,which effectively reduces the number of candidate vectors and the computational burden of the system.Finally,the proposed MPFC is compared with MPTC by simulation.The results show that the proposed fine-division MPFC effectively reduces the system calculation,and has the advantages of simple principle and better dynamic and steady-state control performance.The feasibility of the control strategy is verified.
基金National Natural Science Foundation of China(No.61463025)Opening Foundation of Key Laboratory of Opto-Technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(No.KFKT2018-8)。
文摘Based on the fractional order theory and sliding mode control theory,a model prediction current control(MPCC)strategy based on fractional observer is proposed for the permanent magnet synchronous motor(PMSM)driven by three-level inverter.Compared with the traditional sliding mode speed observer,the observer is very simple and eases to implement.Moreover,the observer reduces the ripple of the motor speed in high frequency range in an efficient way.To reduce the stator current ripple and improve the control performance of the torque and speed,the MPCC strategy is put forward,which can make PMSM MPCC system have better control performance,stronger robustness and good dynamic performance.The simulation results validate the feasibility and effectiveness of the proposed scheme.
文摘Capacitor voltage imbalance is a significant problem for three-level inverters.Due to the mid-point modulation of these inverter topologies,the neutral point potential moves up or down depending on the neutral point current direction creating imbalanced voltages among the two capacitors.This imbalanced capacitor voltage causes imbalanced voltage stress among the semiconductor devices and causes increase output voltage and current harmonics.This paper introduces a modified voltage balancing strategy using two-level space vector modulation.By decomposing the three-level space vector diagram into two-level space vector diagram and redistributing the dwell times of the two-level zero space vectors,the modified voltage balancing method ensures minimal NP voltage ripple.Compared to the commonly used NP voltage control method(using 3L SVM[9]),the proposed modified NP voltage control method offers a slightly higher neutral-point voltage ripple and output voltage harmonics but,it has much lower switching loss,code size and execution time.
文摘This paper presents the design and implementation of a 3 kVA three-phase active T-type neutral-point clamped (NPC) inverter with GaN power devices for low-voltage microgrids. The designed inverter is used in a battery-based energy system (BESS) for power conversion optimization in applications to low-voltage microgrids. A modular design method has been developed for the design and implementation of the AT-NPC inverter. Experimental verification has been carried out based on a 3-kW three-phase T-Type NPC grid-connected inverter. FPGA based digital control technique has been developed for the current control of the three-level three-phase grid inverter. A maximum efficiency of 98.49% has been achieved within a load range from 50% to 75%.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51107016)
文摘The single-phase three-level voltage source inverter based on wavelet modulation(WM) is proposed.The WM technique is based on constructing a nondyadic-type multi-resolution analysis(MRA),which supports sampling continuous-time sinusoidal signals in a nonuniform recurrent manner,and then reconstructing it by using inverter switching actions. In order to further improve the output voltage waveform and reduce harmonic distortion,the wavelet modulation is used to three-level inverter. The high magnitude of fundamental component and significantly reduced harmonic contents of the inverter output voltage can be achieved by using WM in the single-phase three-level voltage source inverter. Furthermore,the WM algorithm is implemented by using only one element government(EV) in DSP. The simulated and experimental results prove the accuracy and feasibility of the WM scheme for single-phase three-level voltage source inverter.
基金National Natural Science Foundation of China(No.61761027)Postgraduate Education Reform Project of Lanzhou Jiaotong University(No.1600120101)
文摘The topology of diode neutral-point-clamped(NPC)three-level inverter is prone to neutral-point potential offset.When the sum of three-phase current is zero,the virtual space vector pulse width modulation(VSVPWM)scheme does not cause the neutral-point voltage offset,but it lacks the ability to balance the deviation.For this reason,a neutral-point potential control strategy combining virtual space vector modulation and loop width control is proposed.The neutral-point potential is balanced by introducing the distribution factor for the regions with redundant vectors.For other regions,the potential is controlled by selecting a suitable switching sequence.Meanwhile,the effect on the virtual vector modulation is reduced within the loop width by setting an appropriate loop width,thereby improving the balance effect.The simulation results show that the proposed method has a strong ability to control the offset and has excellent potential balance performance under the conditions of balanced load,unbalanced load and asymmetric capacitance parameters.
文摘A new ride through strategy is introduced in a three-level dual Z-source inverter, for isolation under semiconductor switching failure condition. Here the output will have no significant decrease in the amplitude and quality. Instead of diodes, the triacs are added to the inverter source ends, as it can perform a bidirectional power transfer also it can operate well in both low and high voltage operating conditions. The faulted part can be isolated by simply altering the firing pulses for turning on/off the triacs using the carrier based SPWM technique and resulting in a boosting output with zero common mode voltage. Consequently, it forms a common floating point or null point with a zero common mode voltage. It is experimentally verified by using MATLAB, and digital oscilloscope.
文摘Cascaded H-Bridge inverter has been researched for the past two decades, but there are no explicit guidelines on how one can realize a cascaded NPC (neutral-point-clamped)/H-Bridge inverter. Past research has also concentrated on realizing a five-level NPC/H-Bridge inverter. This fails to address the principle of realizing a general cascaded N-level NPC/H-Bridge PWM inverter. This paper proposes an improved topology for achieving a nine-level cascaded NPC (neutral-point-clamped) H-Bridge inverter with reduced harmonic content. This new proposed topology requires a lesser number of separate dc sources as compared to conventional cascaded H-Bridge inverter. The whole system is considered as having four three level legs having two positive and two negative legs. By properly phase shifting the modulating wave and carriers, a nine-level output is achieved. A theoretical harmonic analysis of the proposed inverter is carried out based on double Fourier principle. The theoretical results are verified through MATLAB simulation.
文摘The multiplicity of vector combinations for vectors of combined three-level inverters plays an important role, when deciding on the modulation scheme, to obtain minimum switching per inverter vector change, as described in the next Section. This is not possible with reduced common-mode three-level inverter structure, obtained with a five-level cascaded H-bridge configuration, as the space vectors locations do not exhibit multiplicity. Moreover, the proposed configuration requires only two power supplies, whereas the scheme with the five-level H-bridge configuration requires six isolated power supplies.
文摘The multiplicity of vector combinations for vectors of combined three-level inverters plays an important role, when deciding on the modulation scheme, to obtain minimum switching per inverter vector change, as described in the next Section. This is not possible with reduced common-mode three-level inverter structure, obtained with a five-level cascaded H-bridge configuration, as the space vectors locations do not exhibit multiplicity. Moreover, the proposed configuration requires only two power supplies, whereas the scheme with the five-level H-bridge configuration requires six isolated power supplies.
文摘为进一步提高中点电压钳制(neutral point clamped,NPC)H桥级联五电平逆变器的动态响应、降低控制器计算负担的同时确保装置低损耗运行,文中在电压矢量矩形区域分类的基础上,提出一种以满足动态响应和降低开关损耗为目标的两级优化模型预测电压控制策略。首先根据逆变器数学模型和期望电流进行目标电压矢量计算、修正,接着基于矩形区域分类对目标电压矢量进行定位;并以定位后的候选矢量为基础,设计了两级优化目标函数以输出满足要求的最优矢量。仿真和实验结果验证了该方法的有效性,与空间矢量脉宽调制以及传统模型预测电流、电压控制策略相比,该文所研究的两级优化模型预测电压控制策略,在确保逆变器动态响应的前提下既能降低控制器计算负担,还能有效减少器件开关损耗。
文摘随着新能源和微电网的高速发展,孤岛状态下逆变器的故障穿越能力显得尤为重要。针对现有控制方法下孤岛中点钳位(neutral point clamped,NPC)逆变器故障穿越能力弱的问题,提出基于模型预测控制的孤岛微电网NPC逆变器故障穿越控制方法。通过比较负载电压与参考电压实现故障高速诊断;通过提高故障相参考电流幅值提升故障相电流;通过划定计算扇区、消除冗余计算减少计算量和避免权重系数设计;为保证电能质量以及减小数据测量和算法计算产生的延时,采用两步预测方法对延时进行补偿。在Matlab/Simulink中搭建三相LCL孤岛NPC逆变器仿真模型,仿真结果表明,该控制方法在孤岛微电网正常运行时能够将三相电流THD均值控制在2%以内,发生故障时,对故障相电流THD值控制在4%以内,对非故障相电流THD值控制在1.5%以内,能够有效提升孤岛NPC逆变器的故障穿越能力。