期刊文献+
共找到296篇文章
< 1 2 15 >
每页显示 20 50 100
Subsoil tillage enhances wheat productivity,soil organic carbon and available nutrient status in dryland fields 被引量:1
1
作者 Qiuyan Yan Linjia Wu +6 位作者 Fei Dong Shuangdui Yan Feng Li Yaqin Jia Jiancheng Zhang Ruifu Zhang Xiao Huang 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期251-266,共16页
Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nut... Tillage practices during the fallow period benefit water storage and yield in dryland wheat crops.However,there is currently no clarity on the responses of soil organic carbon(SOC),total nitrogen(TN),and available nutrients to tillage practices within the growing season.This study evaluated the effects of three tillage practices(NT,no tillage;SS,subsoil tillage;DT,deep tillage)over five years on soil physicochemical properties.Soil samples at harvest stage from the fifth year were analyzed to determine the soil aggregate and aggregate-associated C and N fractions.The results indicated that SS and DT improved grain yield,straw biomass and straw carbon return of wheat compared with NT.In contrast to DT and NT,SS favored SOC and TN concentrations and stocks by increasing the soil organic carbon sequestration rate(SOCSR)and soil nitrogen sequestration rate(TNSR)in the 0-40 cm layer.Higher SOC levels under SS and NT were associated with greater aggregate-associated C fractions,while TN was positively associated with soluble organic nitrogen(SON).Compared with DT,the NT and SS treatments improved soil available nutrients in the 0-20 cm layer.These findings suggest that SS is an excellent practice for increasing soil carbon,nitrogen and nutrient availability in dryland wheat fields in North China. 展开更多
关键词 tillage dryland wheat fields soil aggregate size soil nutrients soil carbon and nitrogen fractions
下载PDF
Optimized tillage methods increase mechanically transplanted rice yield and reduce the greenhouse gas emissions
2
作者 Shuang Cheng Zhipeng Xing +3 位作者 Chao Tian Mengzhu Liu Yuan Feng Hongcheng Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1150-1163,共14页
Biaxia lrotary tillage in dryland(DBRT)can complete biaxial rotary tillage with straw incorporation,secondary suppression,and ditching,and it has been previously studied in direct-seeded rice and wheat.However,the eff... Biaxia lrotary tillage in dryland(DBRT)can complete biaxial rotary tillage with straw incorporation,secondary suppression,and ditching,and it has been previously studied in direct-seeded rice and wheat.However,the effects of DBRT on the mechanically transplanted rice yield and greenhouse gas emissions remain unclear.To evaluate the effects of DBRT on improving the food security of mechanically transplanted rice and reducing the greenhouse gas emissions,we conducted an experiment for two years with wheat straw incorporation.Three tillage methods were set up:DBRT,uniaxial rotary tillage in dryland and paddy(DPURT),and uniaxial rotary tillage in paddy(PURT).The results showed that compared with DPURT and PURT,DBRT increased the yield of machine-transplanted rice by 7.5-11.0%and 13.3-26.7%,respectively,while the seasonal cumulative CH_(4) emissions were reduced by 13.9-21.2%and 30.2-37.0%,respectively,and the seasonal cumulative N_(2)O emissions were increased by 13.5-28.6%and 50.0-73.1%,respectively.Consequently,DBRT reduced the global warming potential by 10.7-15.5%and 23.7-28.6%,respectively,andtheyield-scaledglobalwarmingpotentialby18.2-21.8%and36.4-39.3%,respectively,compared to DPURT and PURT.These results were mainly related to the fact that DBRT significantly reduced soil bulk density and increased soil redox potential(Eh).Therefore,implementing DBRT in machine-transplanted rice fields is feasible,which cannot only increase the rice yield,but also reduce the greenhouse gas emissions. 展开更多
关键词 integrated tillage rice grain yield CH_(4) N_(2)O
下载PDF
Historical tillage promotes grass-legume mixtures establishment and accelerates soil microbial activity and organic carbon decomposition
3
作者 ZHOU Jiqiong GONG Jinchao +10 位作者 WANG Pengsen SU Yingying LI Xuxu LI Xiangjun LIU Lin BAI Yanfu MA Congyu WANG Wen HUANG Ting YAN Yanhong ZHANG Xinquan 《Journal of Arid Land》 SCIE CSCD 2024年第7期910-924,共15页
Perennial grass-legume mixtures have been extensively used to restore degraded grasslands,increasing grassland productivity and forage quality.Tillage is crucial for seedbed preparation and sustainable weed management... Perennial grass-legume mixtures have been extensively used to restore degraded grasslands,increasing grassland productivity and forage quality.Tillage is crucial for seedbed preparation and sustainable weed management for the establishment of grass-legume mixtures.However,a common concern is that intensive tillage may alter soil characteristics,leading to losses in soil organic carbon(SOC).We investigated the plant community composition,SOC,soil microbial biomass carbon(MBC),soil enzyme activities,and soil properties in long-term perennial grass-legume mixtures under two different tillage intensities(once and twice)as well as in a fenced grassland(FG).The establishment of grass-legume mixtures increased plant species diversity and plant community coverage,compared with FG.Compared with once tilled grassland(OTG),twice tilled grassland(TTG)enhanced the coverage of high-quality leguminous forage species by 380.3%.Grass-legume mixtures with historical tillage decreased SOC and dissolved organic carbon(DOC)concentrations,whereas soil MBC concentrations in OTG and TTG increased by 16.0%and 16.4%,respectively,compared with FG.TTG significantly decreased the activity of N-acetyl-β-D-glucosaminidase(NAG)by 72.3%,whereas soil enzymeβ-glucosidase(βG)in OTG and TTG increased by 55.9%and 27.3%,respectively,compared with FG.Correlation analysis indicated a close association of the increase in MBC andβG activities with the rapid decline in SOC.This result suggested that MBC was a key driving factor in soil carbon storage dynamics,potentially accelerating soil carbon cycling and facilitating biogeochemical cycling.The establishment of grass-legume mixtures effectively improves forage quality and boosts plant diversity,thereby facilitating the restoration of degraded grasslands.Although tillage assists in establishing legume-grass mixtures by controlling weeds,it accelerates microbial activity and organic carbon decomposition.Our findings provide a foundation for understanding the process and effectiveness of restoration management in degraded grasslands. 展开更多
关键词 tillage grass-legume mixtures fencing grassland microbial biomass carbon β-glucosidase(βG) N-acetyl-β-D-glucosaminidase(NAG)
下载PDF
Effect of No Tillage and Conventional Tillage on Wheat Grain Yield Variability: A Review
4
作者 Kenza Kadiri Hassani Moussadek Rachid +4 位作者 Baghdad Bouamar Zouahri Abdelmjid Dakak Houria Maher Hassnae Bouabdli Abdelhak 《Journal of Environmental & Earth Sciences》 CAS 2024年第1期57-70,共14页
Conservation Agriculture(CA)covers more than 205 million hectares in the world.This made it possible to face and mitigate the challenges of climate change,reducing soil erosion and providing multiple ecosystem service... Conservation Agriculture(CA)covers more than 205 million hectares in the world.This made it possible to face and mitigate the challenges of climate change,reducing soil erosion and providing multiple ecosystem services.The first elementary factor influenced is the yield evaluation.It has a direct effect on farmers’choices for sustainable production.The present article records a review focused on wheat yield average positive change compared between conventional tillage(CT)and no tillage(NT)systems.The international database collected showed that NT is adaptable everywhere.The results of wheat yield differentiation showed the influence of crop rotation depending on stations located in different climatic zones.In more than 40 years of research,specialists have succeeded in demonstrating the importance of crop productivity like wheat.The whole integrates also experimentations where the initiation starts more than ten years. 展开更多
关键词 Climate change No tillage Crop rotation WHEAT YIELD
下载PDF
Urban Soil Compaction Remediation by Shallow Tillage and Compost in Hydroseeded Lawn
5
作者 James Jihoon Kang Adam Flores +1 位作者 Engil Isadora Pujol Pereira Jungseok Ho 《Open Journal of Soil Science》 2024年第7期399-415,共17页
Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishm... Construction activities often involve removal of topsoil and compaction of the exposed soil by heavy equipments. Such compacted soils with low organic matter can lead to low infiltration and poor vegetation establishment. The objective of this study was to investigate the efficacy of tillage (shallow till) and compost on soil physical and biological properties in a hydroseeded lawn as a post-construction best management practice for soil compaction remediation. The experimental site received a total of four land treatments in five replicated trials and it was hydroseeded with common Bermuda grass: 1) No Tillage + Compost (NT-C), 2) No Tillage + No Compost (NT-NC;control), 3) Tillage + Compost (T-C), and 4) Tillage + No Compost (T-NC). Bulk density (BD), infiltration rate (IR), and wet aggregate stability (WAS) in each plot were measured to assess soil physical properties while soil organic matter (SOM) and enzyme activity (β-glucosidase, acid-phosphatase, and alkaline-phosphatase) were measured for soil biological properties. Over a 15-months of monitoring period, the shallow tillage loosened the soil initially, but its effect on BD without compost was diminished to control plot level (NT-NC) within 4 months after hydroseeding. Both tillage and compost led to an increase in IR, and it remained higher than control by 2 - 3 times throughout the observation period. The WAS and β-glucosidase activity decreased in tilled plot unless there was compost application. Turfgrass showed greener leaves and aggregated roots in the compost-amended plots (NT-C and T-C). Our results suggest that compost application plays a key role in improving soil physical and biological properties in hydroseeded lawns from construction sites. 展开更多
关键词 COMPACTION COMPOST INFILTRATION Soil Organic Matter Soil Enzyme tillage Wet Aggregate Stability
下载PDF
Changes in soil susceptibility to erosion under tillage and soil fertility management practices
6
作者 Samuel Ayodele Mesele 《Circular Agricultural Systems》 2024年第1期24-30,共7页
The degree to which soil is susceptible to erosion is measured as soil erodibility which can be influenced by different land management options.This study evaluated the dynamics of soil erodibility to tillage and soil... The degree to which soil is susceptible to erosion is measured as soil erodibility which can be influenced by different land management options.This study evaluated the dynamics of soil erodibility to tillage and soil amendments in a maize field under five consecutive cropping cycles.Tillage treatments were no-till,minimum,conventional,and grassland fallow(control).The soil amendment treatments used were no amendment(control),NPK,poultry manure(PM),and1/2NPK+1/2PM and these treatments were applied to all the tillage treatments including no-till.The study showed that tillage and soil amendment interactions had significant effects on soil erodibility(p<0.05).The mean erodibility values ranged from 13×10^(−3) to 24×10^(−3) Mg·h·MJ^(−1)·mm^(−1) in the following order:control<conventional tillage<minimum tillage<no-till.For the soil amendments,erodibility varied from NPK>poultry manure=1/2NPK+1/2PM>control(undisturbed grassland).Regardless of the type of soil amendment,the soil erodibility under conventional tillage was significantly lower than that under no-till and minimum tillage systems.The relationship between erodibility and easily measured soil parameters,such as%sand greater than 100μm,%silt plus very fine sand,clay,and saturated hydraulic conductivity,were significant at p<0.05.The higher contribution(86%)of sand and silt to the variation in erodibility indicates that any other indices of erodibility based on particle size distribution,apart from the nomograph,could satisfactorily predict erodibility values. 展开更多
关键词 SOIL tillage GRASSLAND
下载PDF
Scientific Value of the Fenlong Tillage Erupting Super "Natural Forces" and Its Global Application
7
作者 Wei Benhui 《Meteorological and Environmental Research》 CAS 2018年第6期79-83,共5页
The concept of " natural forces" is proposed in farming field for the first time,and the core theory of Fenlong tillage is illustrated. This tillage method provides " super plough layer" and "... The concept of " natural forces" is proposed in farming field for the first time,and the core theory of Fenlong tillage is illustrated. This tillage method provides " super plough layer" and " super groundwater reservoir" by the machine,including six vertical spiral drills,can smash the soil vertically,without disorganizing soil layer. And this tillage method releases five " natural forces" with infinite space and time,including natural soil activation forces,natural fertility forces,natural water control forces,natural environment improvement forces,and natural river driving forces by activating various land resources. Fenlong tillage can significantly increase the source of high-quality food for human,and solve the problem of natural disasters by natural forces curing itself. It is proposed that the implementation of the " six key projects" by the " natural forces" of Fenlong tillage can solve the deep problems in China. The researchers suggest establishing Fenlong tillage great science engineering which could solve the problem of harmonious symbiosis between man and nature. The present results indicate that Fenlong tillage erupts super natural forces with infinite space and time,which can be used as a deep tillage practice to maintain the natural and environmental beauty of the earth forever. 展开更多
关键词 Fenlong tillage Super plough layer Super groundwater reservoir Natural forces of Fenlong tillage Fenlong tillage great science engineering
下载PDF
Effects of Different Tillage Techniques on Yield and Water Use Efficiency in Broomcorn Millet 被引量:2
8
作者 陈凌 乔治军 +6 位作者 王君杰 王海岗 曹晓宁 田翔 刘思辰 秦慧彬 杨光宗 《Agricultural Science & Technology》 CAS 2017年第3期432-434,437,共4页
[Objective] The effects of different tillage techniques on dry matter accu- mulation, soil water content, water use efficiency and yield of broomcom millet were studied. [Method] With Jinsu 9 as an experiment material... [Objective] The effects of different tillage techniques on dry matter accu- mulation, soil water content, water use efficiency and yield of broomcom millet were studied. [Method] With Jinsu 9 as an experiment material, the effects of deep tillage, traditional tillage and no tillage and rotary tillage on dry matter accumulation, soil water content, water use efficiency and yield of broomcom millet were investi- gated. [Result] Dry matter accumulation rate and accumulated amount were signifi- cantly higher in the deep tillage, no tillage and rotary tillage treatments than in the conventional tillage treatment, and the highest in the deep tillage treatment. The soil water content of the deep tillage treatment at 0-100 cm was higher than those of other tillage techniques, deep tillage also exhibited the highest soil water storage, and water use efficiency values were in order of deep tillage〉rotary tillage〉no tillage〉conventional tillage. The deep tillage treatment also showed the highest grain weight per spike, 1 000-grain weight and yield, while conventional tillage exhibited the lowest values, indicating that deep tillage is most beneficial to improvement of yield and water use efficiency of broomcom millet. [Conclusion] This study provides a scientific basis for water use efficiency of broomcorh millet in its main producing areas. 展开更多
关键词 tillage techniques Broomcorn Millet Water use efficiency YIELD
下载PDF
On the Growth and Physiological Characteristics of Rice under Smashing Ridge Tillage 被引量:1
9
作者 唐茂艳 王强 +4 位作者 陈雷 张晓丽 张宗琼 吕荣 梁天锋 《Agricultural Science & Technology》 CAS 2016年第2期334-337,共4页
Two-line super hybrid rice (Oryza sativa L.) Guiliangyou 2 was taken as the experimental variety, the growth and physiological characteristics of rice under conventional tillage and smashing ridge tillage were compa... Two-line super hybrid rice (Oryza sativa L.) Guiliangyou 2 was taken as the experimental variety, the growth and physiological characteristics of rice under conventional tillage and smashing ridge tillage were compared based on field re- search. The results showed that smashing ridge tillage was beneficial to the tillering growth of rice plants in the the middle and later periods of tillering; under the tillage mode, the white root was more, the vigour was strong during the whole growing period, the SPAD was extremely significantly higher than that of conventional tillage, the net photosynthetic rate of the leaves was high and held green long, which were beneficial to the production and accumulation of photoassimilates; during mature pe- riod, the dry matter accumulation of the overground part under smashing ridge tillage was significantly higher than that of conventional tillage, and the number of productive ears under smashing ridge tillage was more than that of conventional tillage by 27.6×10^4/hm2, thus, the yield-increasing effect was significant and in- creased by 20.36%. 展开更多
关键词 Smashing ridge tillage Rice (Oryza sativa L.) GROWTH Physiological characteristics
下载PDF
Potential Effect of Conservation Tillage on Sustainable Land Use: A Review of Global Long-Term Studies 被引量:34
10
作者 WANG Xiao-Bin CAI Dian-Xiong +2 位作者 W.B.HOOGMOED O.OENEMA U.D.PERDOK 《Pedosphere》 SCIE CAS CSCD 2006年第5期587-595,共9页
Although understood differently in different parts of the world, conservation tillage usually includes leaving crop residues on the soil surface to reduce tillage. Through a global review of long-term conservation til... Although understood differently in different parts of the world, conservation tillage usually includes leaving crop residues on the soil surface to reduce tillage. Through a global review of long-term conservation tillage research, this paper discusses the long-term effect of conservation tillage on sustainable land use, nutrient availability and crop yield response. Research has shown several potential benefits associated with conservation tillage, such as potential carbon sequestration, nutrient availability, and yield response. This research would provide a better perspective of the role of soil conservation tillage and hold promise in promoting application of practical technologies for dryland farming systems in China. 展开更多
关键词 conservation tillage NO-TILL reduced tillage residue management
下载PDF
Short-term Effects of Tillage Practices on Organic Carbon in Clay Loam Soil of Northeast China 被引量:25
11
作者 LIANG Ai-Zhen ZHANG Xiao-Ping +2 位作者 FANG Hua-Jun YANG Xue-Ming C. F. Drury 《Pedosphere》 SCIE CAS CSCD 2007年第5期619-623,共5页
A tillage experiment, consisting of moldboard plow (MP), ridge tillage (RT), and no-tillage (NT), was performed in a randomized complete block design with four replicates to study the effect of 3-year tillage ma... A tillage experiment, consisting of moldboard plow (MP), ridge tillage (RT), and no-tillage (NT), was performed in a randomized complete block design with four replicates to study the effect of 3-year tillage management on SOC content and its distribution in surface layer (30 cm) of a clay loam soil in northeast China. NT did not lead to significant increase of SOC in topsoil (0-5 cm) compared with MP and RT; however, the SOC content in NT soil was remarkably reduced at a depth of 5-20 cm. Accordingly, short-term (3-year) NT management tended to stratify SOC concentration, but not necessarily increase its storage in the plow layer for the soil. 展开更多
关键词 clay loam soil moldboard plow NO-tillage ridge tillage soil organic carbon
下载PDF
Differentiation of Soil Fauna Populations in Conventional Tillage and No-Tillage Red Soil Ecosystems 被引量:8
12
作者 HU FENG LI HUIXIN and WU SHANMEI(Nanjing Agriculturol University, Nanjing 210095 (China)) 《Pedosphere》 SCIE CAS CSCD 1997年第4期339-348,共10页
In a field experiment, the populations of major soil fauna groups including earthworms, enchytraeids,arthropods and nematodes were examined in conventional tillage (CT) and no-tillage (NT) red soil ecosystems to evalu... In a field experiment, the populations of major soil fauna groups including earthworms, enchytraeids,arthropods and nematodes were examined in conventional tillage (CT) and no-tillage (NT) red soil ecosystems to evaluate their responses to tillage disturbance. Earthworms, macrry and micro-arthropods were stimulated under NT with earthworms showing the highest population increase by four times, while enchytraeids and nematodes favored CT system, predicting certain adaptability of these animals to plow-disturbed soil environment. On the basis of relative response index it was found that soil fauna was more sensitive to tillage than soil resource base (C and N pools) and microflora. The population structure of soil fauna was also affected by tillage treatments. Analysis on nematode trophic groups showed that bacteria-feeding and plant parasitic nematodes were more abundant in CT soil whereas the proportions of fungivores and omnivorepredators increased in NT soil. Possible reasons for the differentiation in both size and structure of the fauna population were discussed and the ecological significance involved in these changes was emphasized. 展开更多
关键词 conventional tillage NO-tillage red soil ecosystems soil fauna
下载PDF
Effect of experimental warming on soil respiration under conventional tillage and no-tillage farmland in the North China Plain 被引量:6
13
作者 TU Chun LI Fa-dong +3 位作者 QIAO Yun-feng ZHU Nong GU Cong-ke ZHAO Xin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第4期967-979,共13页
Understanding the response of soil respiration to global warming in agro-ecosystem is crucial for simulating terrestrial carbon (C) cycle. We conducted an infrared warming experiment under conventional tillage (CT... Understanding the response of soil respiration to global warming in agro-ecosystem is crucial for simulating terrestrial carbon (C) cycle. We conducted an infrared warming experiment under conventional tillage (CT) and no-tillage (NT) farmland for winter wheat and summer maize rotation system in North China Plain (NCP). Treatments include CT with and without warming (CTW and CTN), NT with and without warming (NTW and NTN). The results indicated that warming had no sig- nificant effect on soil moisture in irrigated farmland of NCP (P〉0.05). The elevated average soil temperature of 1.1-116℃ in crop growing periods could increase annual soil CO2 emission by 10.3% in CT filed (P〉0.05), but significantly increase it by 12.7% in NT field (P〈0.05), respectively. The disturbances such as plowing, irrigation and precipitation resulted in the obvious soil CO2 emission peaks, which contributed 36.6-40.8% of annual soil cumulative CO2 emission. Warming would enhance these soil CO2 emission peaks; it might be associated with the warming-induced increase of autotrophic respiration and heterotrophic respiration. Compared with un-warming treatments, dissolved organic carbon (DOC) and soil microbial biomass carbon (MBC) in warming treatments were significantly increased by 11.6-23.4 and 12.9-23.6%, respectively, indicating that the positive responses of DOC and MBC to warming in both of two tillage systems. Our study highlights that climate warming may have positive effects on soil C release in NCP in association with response of labile C substrate to warming. 展开更多
关键词 global warming conventional tillage NO-tillage soil respiration dissolved organic carbon soil microbial biomasscarbon
下载PDF
Vertical Distribution of Soil Nematode Communities under Different Tillage Systems in Lower Reaches of Liaohe River 被引量:2
14
作者 HOU Xuekun HU Ning +2 位作者 ZHANG Xiaoke LIANG Lei ZHAI Ruichang 《Chinese Geographical Science》 SCIE CSCD 2010年第2期106-111,共6页
Vertical distribution of soil nematode communities under conventional tillage (CT),no-tillage (NT) and fallow field (FF) treatments in the Lower Reaches of the Liaohe River was investigated at six soil depths (0-5 cm,... Vertical distribution of soil nematode communities under conventional tillage (CT),no-tillage (NT) and fallow field (FF) treatments in the Lower Reaches of the Liaohe River was investigated at six soil depths (0-5 cm,5-15 cm,15-30 cm,30-50 cm,50-75 cm and 75-100 cm). The results show that total nematode abundance gradually decreases with depth,and the highest number of total nematodes is observed at 0-5 cm depth under NT and FF treatments. The number of fungivores and plant parasites is significantly higher under FF and NT treatments than under CT treatment at the 0-5 cm depth. There is significant soil depth effect on the abundances of bacterivores and omnivores-predators,which exhibits a similar trend to that of total nematodes; whereas,no significant tillage effect is found. Tillage effect on soil nematode communities can be reflected by values of relative tillage response of index V. Results of index V indicate that total nematodes,bacterivores,fungivores and plant parasites are mildly inhibited,and omnivores-predators is moderately inhibited under CT treatment; while,under FF treatment total nematodes is mildly,and fungivores and plant parasites are moderately stimulated,respectively. 展开更多
关键词 soil nematode tillage system vertical distribution tillage response
下载PDF
Effect of Interplanting with Zero Tillage and Straw Manure on Rice Growth and Rice Quality 被引量:2
15
作者 LIU Shi ping NIE Xin tao DAI Qi gen Huo Zhong yang XU Ke 《Rice science》 SCIE 2007年第3期204-210,共7页
The interplanting with zero-tillage of rice, i.e. direct sowing rice 10-20 days before wheat harvesting, and remaining about 30-cm high stubble after cutting wheat or rice with no tillage, is a new cultivation technol... The interplanting with zero-tillage of rice, i.e. direct sowing rice 10-20 days before wheat harvesting, and remaining about 30-cm high stubble after cutting wheat or rice with no tillage, is a new cultivation technology in wheat-rice rotation system. To study the effects of interplanting with zero tillage and straw manure on rice growth and quality, an experiment was conducted in a wheat-rotation rotation system. Four treatments, i.e. ZIS (Zero-tillage, straw manure and rice interplanting), Zt (Zero-tillage, no straw manure and rice interplanting), PTS (Plowing tillage, straw manure and rice transplanting), and PT (Plowing tillage, no straw manure and rice transplanting), were used. ZtS reduced plant height, leaf area per plant and the biomass of rice plants, but the biomass accumulation of rice at the late stage was quicker than that under conventional transplanting cultivation. In the first year (2002), there was no significant difference in rice yield among the four treatments. However, rice yield decreased in interplanting with zero-tillage in the second year (2003). Compared with the transplanting treatments, the number of filled grains per panicle decreased but l000-grain weight increased in interplanting with zero-tillage, which were the main factors resulting in higher yield, tnterplanting with zero-tillage improved the milling and appearance qualities of rice. The rates of milled and head rice increased while chalky rice rate and chalkiness decreased in interplanting with zero-tillage. Zero-tillage and interplanting also affected rice nutritional and cooking qualities. In 2002, ZIS showed raised protein content, decreased amylose content, softer gel consistency, resulting in improved rice quality. In 2003, zero-tillage and interplanting decreased protein content and showed similar amylose content as compared with transplanting treatments. Moreover, protein content in PTS was obviously increased in comparison with the other three treatments. The rice in interplanting with zero-tillage treatments had higher peak viscosity and breakdown, lower setback, showing better rice taste quality. The straw manure had no significant effect on rice viscosity under interplanting with zero-tillage, but had the negative influence on the rice taste quality under transplanting with plowing tillage. 展开更多
关键词 rice conservation tillage ZERO-tillage INTERPLANTING straw manure yield components rice quality leaf area biomass accumulation root activity milling and appearance quality nutritional quality RVA profile characteristics
下载PDF
Effects of Different Tillage and Mulching Modes on Tobacco Output Value and Soil Quality
16
作者 罗付香 林超文 +5 位作者 庞良玉 冯文强 张建华 朱永群 刘海涛 姚丽 《Agricultural Science & Technology》 CAS 2014年第9期1574-1579,共6页
Based on three years of long-term fixed-site field trial, the effects of differ- ent tillage and mulching modes on the yield and output value of tobacco and soil quality were investigated. The results showed that the ... Based on three years of long-term fixed-site field trial, the effects of differ- ent tillage and mulching modes on the yield and output value of tobacco and soil quality were investigated. The results showed that the yield and output value of to- bacco in tillage treatment were improved by 22.72 % and 37.23 % compared with non-tillage treatment, respectively; the yield and output value of tobacco in rotation treatment were improved by 1.83% and 19.41% compared with continuous cropping treatment, respectively; the yield and output value of tobacco in straw mulching treatment were improved by 3.55% and 2.4% compared with non-straw mulching treatment, respectively, which indicated that tillage, rotation and straw mulching could improve the yield and output value of tobacco to a certain extent; especially, the yield and output value of tobacco increased significantly after plowing under rotation conditions. The contents of available phosphorus (AP), alkali-hydrolyzable nitrogen (AN), organic matter (OM), total nitrogen (TN) and total phosphorus (TP) in non- tillage treatment were 35.14%, 9.92%, 9.57%, 4.40% and 34.16% higher compared with tillage treatment; especially, under non-tillage conditions, soil pH and contents of available potassium (AK), AP, AN,OM,TN,TP and total potassium (TK) in continu- ous cropping field were 2.01%, 48.68%, 73.09%, 11.45%, 7.71%, 7.31%, 47.68% and 11.78% higher compared with rotation field, indicating that non-tillage treatment and continuous cropping could improve the total content and available content of organic matter, nitrogen and phosphorus. Therefore, from the perspective of soil fer- tility improvement and sustainable tobacco production, continuous cropping under non-tillage conditions might be the most appropriate cropping pattern for local soil fertility improvement; aiming at improving the yield and output value of tobacco, green manure-tobacco→, green manure/wheat/maize→green manure-tobacco ro- tation might be the most appropriate cropping pattern. 展开更多
关键词 TOBACCO tillage mode Mulching mode Output value Soil quality
下载PDF
Study on Relative Soil and Water Conservation Benefits of Ridge Tillage in Different Terrain Conditions in the Black Soil Area of Northeast China
17
作者 赵玉明 姜洪涛 王世界 《Agricultural Science & Technology》 CAS 2015年第10期2354-2360,共7页
Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore... Ridge tillage, which is a very common and important tillage measure in the black soil area of northeast China, has some soil and water conservation bene- fits, but has little attention. It is very important to explore the spatial distribution of the ridge direction of the arable land and its soil and water conservation benefits in different terrain conditions in the black soil area. So Binxian County of Heilongjiang Province was selected as the study area, and 168 field investigation units were ex- tracted by stratified sampling method and investigated. According to equations of slope gradient factor and slope gradient in ridge direction, and based on the soft- ware of Arcmap, SPSS and Excel, the investigation data of soil and water loss in Binxian County were analyzed and counted, The results show that in plain, hilly and mountainous areas, the average ground slope gradients are 1.92°, 6.20° and 8.27° respectively, and the average slope gradients along ridge direction are 1.33°, 4.52°and 6.45° respectively, which account for about 70%, 73% and 78% of the average ground slope gradients in the same terrain condition; the relative quantities of soil erosion in the present ridge tillage condition account for about 55%, 69% and 67% respectively of that in down-slope ridge tillage conditions, so the present ridge tillage has obviously relative soil and water conservation benefits. Based on these results, the reasons of the present ridge tillage status were analyzed, and some reform measures were proposed. The results could not only help to comprehend the spatial distribution and soil and water conservation benefits of ridge tillage in the black soil area of Northeast China, but also provide scientific references for the layout of local soil and water conservation measures. 展开更多
关键词 The black soil area in northeast China Ridge tillage Ridge direction Soil erosion Investigation of soil and water loss Soil and water conservation benefits
下载PDF
Evaluating the Impact of Different Tillage Regimes and Nitrogen Levels on Yield and Yield Components of Maize (Zea mays L.) 被引量:1
18
作者 Muhammad Naeem Shahid M. Shahid Ibni Zamir +5 位作者 Ihtisham-Ul Haq M. Kamran Khan Mazhar Hussain Usman Afzal M. Asim Ihtisham Ali 《American Journal of Plant Sciences》 2016年第6期789-797,共9页
A field study to evaluate the impact of different tillage regimes and nitrogen levels on yield and yield components of maize (Zea mays L.), was conducted during autumn 2014 at Students Farm, Department of Agronomy, Un... A field study to evaluate the impact of different tillage regimes and nitrogen levels on yield and yield components of maize (Zea mays L.), was conducted during autumn 2014 at Students Farm, Department of Agronomy, University of Agriculture, Faisalabad. The experiment was laid out in RCBD (Randomized Complete Block Design), with split plot arrangement having three replications. The experiment was comprised of three tillage regimes (Minimum, Conventional and Deep) and three nitrogen levels viz: 100, 200 and 300 kg&bull;ha<sup>-1</sup>. Urea was used as a source of nitrogen, sulphate of potash as a source of potassium and triple super phosphate as a source of phosphorous. The amount of phosphorous and potash was constant in all the treatments i.e. 125 kg&bull;ha<sup>-1</sup> and 100 kg&bull;ha<sup>-1</sup> respectively. Results of present study are summarized as yield parameters are significantly affected by different nitrogen levels and tillage regimes. Maximum number of plants at harvest (7.93), number of grain rows per cob (17.70), number of grains per row (34.31), number of grains per cob (678.58), and cob weight (187.50 g) were observed in deep tillage at 200 kg&bull;ha<sup>-1</sup> nitrogen application. 1000-grain weight (275.52 g), biological yield (15.66 t&bull;ha<sup>-1</sup>), grain yield (6.16 t&bull;ha<sup>-1</sup>) and dried stalk yield (9.91 t&bull;ha<sup>-1</sup>) were observed maximum in deep tillage at 200 kg&bull;ha<sup>-1</sup> nitrogen application. Harvest index significantly affected by tillage regimes and maximum harvest index (39.58%) were recorded in deep tillage which was statistically at par with conventional tillage (38.83%). It was concluded that higher grain yield of maize can be obtained by deep tillage with the application of 200 kg&bull;ha<sup>-1</sup> nitrogen application under the prevailing conditions of Faisalabad. 展开更多
关键词 tillage Regimes Nitrogen Levels Deep tillage Biological Yield Harvest Index
下载PDF
Microbial Responses of Soil Fertility to Depth of Tillage and Incorporation of Straw in a Haplic Chernozem in Northeast China
19
作者 CHEN Xu SHI Chao +5 位作者 HAN Xiaozeng WANG Xiaohui GUO Zhenxi LU Xinchun ZOU Wenxiu YAN Jun 《Chinese Geographical Science》 SCIE CSCD 2023年第4期693-707,共15页
Straw is widely incorporated into soil worldwide,but most studies have concentrated on the effects of straw mulching or incorporation with topsoil.To determine the effect of depth of straw incorporation on bacterial a... Straw is widely incorporated into soil worldwide,but most studies have concentrated on the effects of straw mulching or incorporation with topsoil.To determine the effect of depth of straw incorporation on bacterial and fungal communities,we established a field experiment in a region in Northeast China with Haplic Chernozems using four treatments:conventional tillage(CT,tillage to a depth of 15 cm with no straw incorporation),straw incorporation with conventional tillage(SCT,tillage to a depth of 15 cm),inversion tillage(IT,tillage to a depth of 35 cm)and straw incorporation with inversion tillage(SIT,tillage to a depth of 35 cm).The soils were managed by inversion to a depth of 15 or 35 cm after harvest.The results show that soil organic carbon content was significantly higher and pH and bulk density were significantly lower in the 15–35 cm layer in IT and SIT than CT and SCT.Fungal abundance was higher with straw incorporation,but fungal diversity was lower in the 0–15 cm layer in SCT and SIT than in CT and IT.Path length in the bacterial network was shorter and connectivity was higher in CT+SCT than in IT+SIT,leading to a more complex ecosystem,and the fungal network had opposite patterns.The key taxa in the phylum Actinobacteriota and Ascomycota in the microbial networks changed dramatically at the genus level following inversion tillage with straw amendment,which may increase bacterial network resistance to environmental disturbances and unstable fungal networks,resulting in large changes in the fungal community involved in the decomposition of recalcitrant straw-derived C and the more efficient acquisition of limiting resources. 展开更多
关键词 soil microbiome inversion tillage conventional tillage straw amendment Haplic Chernozem Northeast China
下载PDF
Genotype×tillage interaction and the performance of winter bread wheat genotypes in temperate and cold dryland conditions
20
作者 Ebrahim ROOHI Reza MOHAMMADI +6 位作者 Abdoul Aziz NIANE Javad VAFABAKHSH Mozaffar ROUSTAEE Mohammad Reza JALAL KAMALI Shahriar SOHRABI Shahriar FATEHI Hossain TARIMORADI 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第11期3199-3215,共17页
Growing concerns for food security and the alleviation of hunger necessitate knowledge-based crop management technologies for sustainable crop production.In this study,13 winter bread wheat genotypes(old,relatively ol... Growing concerns for food security and the alleviation of hunger necessitate knowledge-based crop management technologies for sustainable crop production.In this study,13 winter bread wheat genotypes(old,relatively old,modern,and breeding lines)were evaluated under three different tillage systems,i.e.,conventional tillage(CT,full tillage with residue removed),reduced tillage(RT,chisel tillage with residue retained)and no-tillage(NT,no-tillage with residue retained on the soil surface)in farmer’s fields under rainfed conditions using strip-plot arrangements in a randomized complete block design with three replications in the west of Iran(Kamyaran and Hosseinabad locations)over two cropping seasons(2018–2019 and 2019–2020).The main objectives were to investigate the effects of tillage systems and growing conditions on the agronomic characteristics,grain yield and stability performance of rainfed winter bread wheat genotypes.Significant(P<0.01)genotype×tillage system interaction effects on grain yield and agronomic traits suggested that the genotypes responded differently to the different tillage systems.The number of grains per spike and plant height were positively(P<0.0)associated with grain yield under the NT system,so they may be considered as targeted traits for future wheat breeding.Using statistical models,the modern cultivars(“Sadra”and“Baran”)were identified as high yielding and showed yield stability across the different tillage systems.As per each tillage system,genotype“Sadra”followed by“Zargana-6//Dari 1-7 Sabalan”exhibited higher adaption to CT;while cultivars“Jam”and“Azar2”showed better performance under the RT system;and cultivars“Varan”and“Baran”tended to have better performance expression in the NT condition.The increased grain yields achieved in combination with lower costs and greater profits from conservation agriculture suggest that adapted cultivar and NT systems should be evaluated and promoted more widely to farmers in the west of Iran as an attractive package of crop management technologies.In conclusion,variations in the performance of genotypes and the significant genotype×tillage system interaction effects on grain yield and some agronomic traits assessed in this study suggest that the development and selection of cultivars adapted to the NT system should be considered and included in the strategies and objectives of winter wheat breeding programs for the temperate and cold dryland conditions of Iran. 展开更多
关键词 bread wheat NO-tillage reduced tillage grain yield yield stability
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部