期刊文献+
共找到2,231篇文章
< 1 2 112 >
每页显示 20 50 100
FEM tire model oriented to virtual experiment of off-road vehicle trafficability 被引量:2
1
作者 庞罕 张为公 王霞 《Journal of Southeast University(English Edition)》 EI CAS 2007年第4期540-544,共5页
In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed... In order to estimate the trafficability of off-road vehicles, the linear relationships between the pressure and the stiffness of the tire and the action of the vertical tire force with the viscoelasticity are analyzed. The method to improve the precision of the model by the coefficients is presented. The constitutive equation of the three-parameter linear model and the stiffness matrix of four-node isoparametric elements are derived to construct the FEM (finite element method) tire model in plan stress. A demarcation and verification system is designed based on the six-dimensional wheel force transducer and the vertical tire force is measured under different velocities. The results show that the model and the method proposed are reasonable. 展开更多
关键词 trafficability tire model VISCOELASTICITY six-dimensional wheel force transducer
下载PDF
Design and Trafficability Study of Flexible Wheel for Planetary Exploration Rover 被引量:1
2
作者 李雯 高峰 徐国艳 《Journal of Beijing Institute of Technology》 EI CAS 2007年第3期279-283,共5页
To reduce sending costs, a flexible wheel configuration is proposed. The wheel is made of titanium alloy (Ti-6Al-4V) in consideration of the planetary environment factors (i. e. strong radiation, big temperature di... To reduce sending costs, a flexible wheel configuration is proposed. The wheel is made of titanium alloy (Ti-6Al-4V) in consideration of the planetary environment factors (i. e. strong radiation, big temperature differences, high vacuum), and mass constraint of launch vehicle. The advantages of the proposed wheel involves the potential for: ① small sending volume and mass, ② large deployed area and volume to reduce wheel loading, ③ a damping effect to smooth motion on rough terrain. To study the trafficability and tractive performance of the wheel concept, the drawbar pull and driven torque were calculated based on simplified model of terramechanics formulations. The results show that the wheel possesses sufficient drawbar pull to negotiate all types of soil stratums listed in this contribution. 展开更多
关键词 planetary rover flexible wheel wheel-soil interaction trafficability
下载PDF
Soil Trafficability Forecasting
3
作者 Marie-France Jones Paul Arp 《Open Journal of Forestry》 2019年第4期296-322,共27页
This article introduces and evaluates a Soil Trafficability Model (STRAM) designed to estimate and forecast potential rutting depth on forest soils due to heavy machine traffic. This approach was developed within the ... This article introduces and evaluates a Soil Trafficability Model (STRAM) designed to estimate and forecast potential rutting depth on forest soils due to heavy machine traffic. This approach was developed within the wood-forwarding context of four harvest blocks in Northern and Central New Brunswick. Field measurements used for model calibration involved determining soil rut depths, volumetric moisture content, bulk density, soil resistance to cone penetration (referred to as cone index, or CI), and the dimensionless nominal soil cone index (NCI) defined by the ratio of CI over wheel foot print pressure. With STRAM, rut depth is inferred from: 1) machine dimensions pertaining to estimating foot print area and pressure;2) pore-filled soil moisture content and related CI projections guided by year-round daily weather records using the Forest Hydrology Model (ForHyM);3) accounting for within-block soil property variations using multiple and Random Forest regression techniques. Subsequent evaluations of projected soil moisture, CI and rut-depth values accounted for about 40 (multiple regression) and 80 (Random Forest) percent of the corresponding field measured values. 展开更多
关键词 SOIL trafficability WOOD FORWARDING PLOT Surveys Regression Comparisons Cartographic Depth-to-Water
下载PDF
Modeling and Comprehensive Review of Signaling Storms in 3GPP-Based Mobile Broadband Networks:Causes,Solutions,and Countermeasures
4
作者 Muhammad Qasim Khan Fazal Malik +1 位作者 Fahad Alturise Noor Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期123-153,共31页
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a... Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject. 展开更多
关键词 Signaling storm problems control signaling load analytical modeling 3GPP networks smart devices diameter signaling mobile broadband data access data traffic mobility management signaling network architecture 5G mobile communication
下载PDF
Network traffic classification:Techniques,datasets,and challenges 被引量:2
5
作者 Ahmad Azab Mahmoud Khasawneh +2 位作者 Saed Alrabaee Kim-Kwang Raymond Choo Maysa Sarsour 《Digital Communications and Networks》 SCIE CSCD 2024年第3期676-692,共17页
In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the... In network traffic classification,it is important to understand the correlation between network traffic and its causal application,protocol,or service group,for example,in facilitating lawful interception,ensuring the quality of service,preventing application choke points,and facilitating malicious behavior identification.In this paper,we review existing network classification techniques,such as port-based identification and those based on deep packet inspection,statistical features in conjunction with machine learning,and deep learning algorithms.We also explain the implementations,advantages,and limitations associated with these techniques.Our review also extends to publicly available datasets used in the literature.Finally,we discuss existing and emerging challenges,as well as future research directions. 展开更多
关键词 Network classification Machine learning Deep learning Deep packet inspection Traffic monitoring
下载PDF
Dynamic response mechanism and precursor characteristics of gneiss rockburst under different initial burial depths 被引量:1
6
作者 LIU Dongqiao SUN Jie +4 位作者 MENG Wen HE Manchao ZHANG Chongyuan LI Ran CAO Binghao 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1004-1018,共15页
To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system... To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system and acoustic emission(AE)monitoring system were used to monitor the entire rockburst process in real time.The experimental results show that when the initial burial depth increases from 928 m to 1320 m,the proportion of large fracture scale in rockburst increases by 154.54%,and the AE energy increases by 565.63%,reflecting that the degree and severity of rockburst increase with the increase of burial depth.And then,two mechanisms are proposed to explain this effect,including(i)the increase of initial geostress improves the energy storage capacity of gneiss,and then,the excess energy which can be converted into kinetic energy of debris ejection increases,consequently,a more pronounced violent ejection phenomenon is observed at rockburst;(ii)the increase of initial geostress causes more sufficient plate cracks of gneiss after unloading ofσh,which provides a basis for more severe ejection of rockburst.What’s more,a precursor with clear physical meaning for rockburst is proposed under the framework of dynamic response process of crack evolution.Finally,potential value in long term rockburst warning of the precursor obtained in this study is shown via the comparison of conventional precursor. 展开更多
关键词 Traffic Engineering Gneiss Rockburst Crack propagation Excess energy Precursor characteristic
下载PDF
Unknown Application Layer Protocol Recognition Method Based on Deep Clustering 被引量:1
7
作者 Wu Jisheng Hong Zheng +1 位作者 Ma Tiantian Si Jianpeng 《China Communications》 SCIE CSCD 2024年第12期275-296,共22页
In recent years,many unknown protocols are constantly emerging,and they bring severe challenges to network security and network management.Existing unknown protocol recognition methods suffer from weak feature extract... In recent years,many unknown protocols are constantly emerging,and they bring severe challenges to network security and network management.Existing unknown protocol recognition methods suffer from weak feature extraction ability,and they cannot mine the discriminating features of the protocol data thoroughly.To address the issue,we propose an unknown application layer protocol recognition method based on deep clustering.Deep clustering which consists of the deep neural network and the clustering algorithm can automatically extract the features of the input and cluster the data based on the extracted features.Compared with the traditional clustering methods,deep clustering boasts of higher clustering accuracy.The proposed method utilizes network-in-network(NIN),channel attention,spatial attention and Bidirectional Long Short-term memory(BLSTM)to construct an autoencoder to extract the spatial-temporal features of the protocol data,and utilizes the unsupervised clustering algorithm to recognize the unknown protocols based on the features.The method firstly extracts the application layer protocol data from the network traffic and transforms the data into one-dimensional matrix.Secondly,the autoencoder is pretrained,and the protocol data is compressed into low dimensional latent space by the autoencoder and the initial clustering is performed with K-Means.Finally,the clustering loss is calculated and the classification model is optimized according to the clustering loss.The classification results can be obtained when the classification model is optimal.Compared with the existing unknown protocol recognition methods,the proposed method utilizes deep clustering to cluster the unknown protocols,and it can mine the key features of the protocol data and recognize the unknown protocols accurately.Experimental results show that the proposed method can effectively recognize the unknown protocols,and its performance is better than other methods. 展开更多
关键词 attention mechanism clustering loss deep clustering network traffic unknown protocol recognition
下载PDF
Applying an Improved Dung Beetle Optimizer Algorithm to Network Traffic Identification 被引量:1
8
作者 Qinyue Wu Hui Xu Mengran Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4091-4107,共17页
Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexi... Network traffic identification is critical for maintaining network security and further meeting various demands of network applications.However,network traffic data typically possesses high dimensionality and complexity,leading to practical problems in traffic identification data analytics.Since the original Dung Beetle Optimizer(DBO)algorithm,Grey Wolf Optimization(GWO)algorithm,Whale Optimization Algorithm(WOA),and Particle Swarm Optimization(PSO)algorithm have the shortcomings of slow convergence and easily fall into the local optimal solution,an Improved Dung Beetle Optimizer(IDBO)algorithm is proposed for network traffic identification.Firstly,the Sobol sequence is utilized to initialize the dung beetle population,laying the foundation for finding the global optimal solution.Next,an integration of levy flight and golden sine strategy is suggested to give dung beetles a greater probability of exploring unvisited areas,escaping from the local optimal solution,and converging more effectively towards a global optimal solution.Finally,an adaptive weight factor is utilized to enhance the search capabilities of the original DBO algorithm and accelerate convergence.With the improvements above,the proposed IDBO algorithm is then applied to traffic identification data analytics and feature selection,as so to find the optimal subset for K-Nearest Neighbor(KNN)classification.The simulation experiments use the CICIDS2017 dataset to verify the effectiveness of the proposed IDBO algorithm and compare it with the original DBO,GWO,WOA,and PSO algorithms.The experimental results show that,compared with other algorithms,the accuracy and recall are improved by 1.53%and 0.88%in binary classification,and the Distributed Denial of Service(DDoS)class identification is the most effective in multi-classification,with an improvement of 5.80%and 0.33%for accuracy and recall,respectively.Therefore,the proposed IDBO algorithm is effective in increasing the efficiency of traffic identification and solving the problem of the original DBO algorithm that converges slowly and falls into the local optimal solution when dealing with high-dimensional data analytics and feature selection for network traffic identification. 展开更多
关键词 Network security network traffic identification data analytics feature selection dung beetle optimizer
下载PDF
A Probabilistic Trust Model and Control Algorithm to Protect 6G Networks against Malicious Data Injection Attacks in Edge Computing Environments 被引量:1
9
作者 Borja Bordel Sánchez Ramón Alcarria Tomás Robles 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期631-654,共24页
Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control l... Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks. 展开更多
关键词 6G networks noise injection attacks Gaussian mixture model Bessel function traffic filter Volterra filter
下载PDF
Network Intrusion Traffic Detection Based on Feature Extraction 被引量:1
10
作者 Xuecheng Yu Yan Huang +2 位作者 Yu Zhang Mingyang Song Zhenhong Jia 《Computers, Materials & Continua》 SCIE EI 2024年第1期473-492,共20页
With the increasing dimensionality of network traffic,extracting effective traffic features and improving the identification accuracy of different intrusion traffic have become critical in intrusion detection systems(... With the increasing dimensionality of network traffic,extracting effective traffic features and improving the identification accuracy of different intrusion traffic have become critical in intrusion detection systems(IDS).However,both unsupervised and semisupervised anomalous traffic detection methods suffer from the drawback of ignoring potential correlations between features,resulting in an analysis that is not an optimal set.Therefore,in order to extract more representative traffic features as well as to improve the accuracy of traffic identification,this paper proposes a feature dimensionality reduction method combining principal component analysis and Hotelling’s T^(2) and a multilayer convolutional bidirectional long short-term memory(MSC_BiLSTM)classifier model for network traffic intrusion detection.This method reduces the parameters and redundancy of the model by feature extraction and extracts the dependent features between the data by a bidirectional long short-term memory(BiLSTM)network,which fully considers the influence between the before and after features.The network traffic is first characteristically downscaled by principal component analysis(PCA),and then the downscaled principal components are used as input to Hotelling’s T^(2) to compare the differences between groups.For datasets with outliers,Hotelling’s T^(2) can help identify the groups where the outliers are located and quantitatively measure the extent of the outliers.Finally,a multilayer convolutional neural network and a BiLSTM network are used to extract the spatial and temporal features of network traffic data.The empirical consequences exhibit that the suggested approach in this manuscript attains superior outcomes in precision,recall and F1-score juxtaposed with the prevailing techniques.The results show that the intrusion detection accuracy,precision,and F1-score of the proposed MSC_BiLSTM model for the CIC-IDS 2017 dataset are 98.71%,95.97%,and 90.22%. 展开更多
关键词 Network intrusion traffic detection PCA Hotelling’s T^(2) BiLSTM
下载PDF
A New Speed Limit Recognition Methodology Based on Ensemble Learning:Hardware Validation 被引量:1
11
作者 Mohamed Karray Nesrine Triki Mohamed Ksantini 《Computers, Materials & Continua》 SCIE EI 2024年第7期119-138,共20页
Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recogn... Advanced DriverAssistance Systems(ADAS)technologies can assist drivers or be part of automatic driving systems to support the driving process and improve the level of safety and comfort on the road.Traffic Sign Recognition System(TSRS)is one of themost important components ofADAS.Among the challengeswith TSRS is being able to recognize road signs with the highest accuracy and the shortest processing time.Accordingly,this paper introduces a new real time methodology recognizing Speed Limit Signs based on a trio of developed modules.Firstly,the Speed Limit Detection(SLD)module uses the Haar Cascade technique to generate a new SL detector in order to localize SL signs within captured frames.Secondly,the Speed Limit Classification(SLC)module,featuring machine learning classifiers alongside a newly developed model called DeepSL,harnesses the power of a CNN architecture to extract intricate features from speed limit sign images,ensuring efficient and precise recognition.In addition,a new Speed Limit Classifiers Fusion(SLCF)module has been developed by combining trained ML classifiers and the DeepSL model by using the Dempster-Shafer theory of belief functions and ensemble learning’s voting technique.Through rigorous software and hardware validation processes,the proposedmethodology has achieved highly significant F1 scores of 99.98%and 99.96%for DS theory and the votingmethod,respectively.Furthermore,a prototype encompassing all components demonstrates outstanding reliability and efficacy,with processing times of 150 ms for the Raspberry Pi board and 81.5 ms for the Nano Jetson board,marking a significant advancement in TSRS technology. 展开更多
关键词 Driving automation advanced driver assistance systems(ADAS) traffic sign recognition(TSR) artificial intelligence ensemble learning belief functions voting method
下载PDF
BSTFNet:An Encrypted Malicious Traffic Classification Method Integrating Global Semantic and Spatiotemporal Features 被引量:1
12
作者 Hong Huang Xingxing Zhang +2 位作者 Ye Lu Ze Li Shaohua Zhou 《Computers, Materials & Continua》 SCIE EI 2024年第3期3929-3951,共23页
While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning me... While encryption technology safeguards the security of network communications,malicious traffic also uses encryption protocols to obscure its malicious behavior.To address the issues of traditional machine learning methods relying on expert experience and the insufficient representation capabilities of existing deep learning methods for encrypted malicious traffic,we propose an encrypted malicious traffic classification method that integrates global semantic features with local spatiotemporal features,called BERT-based Spatio-Temporal Features Network(BSTFNet).At the packet-level granularity,the model captures the global semantic features of packets through the attention mechanism of the Bidirectional Encoder Representations from Transformers(BERT)model.At the byte-level granularity,we initially employ the Bidirectional Gated Recurrent Unit(BiGRU)model to extract temporal features from bytes,followed by the utilization of the Text Convolutional Neural Network(TextCNN)model with multi-sized convolution kernels to extract local multi-receptive field spatial features.The fusion of features from both granularities serves as the ultimate multidimensional representation of malicious traffic.Our approach achieves accuracy and F1-score of 99.39%and 99.40%,respectively,on the publicly available USTC-TFC2016 dataset,and effectively reduces sample confusion within the Neris and Virut categories.The experimental results demonstrate that our method has outstanding representation and classification capabilities for encrypted malicious traffic. 展开更多
关键词 Encrypted malicious traffic classification bidirectional encoder representations from transformers text convolutional neural network bidirectional gated recurrent unit
下载PDF
Urban Traffic Control Meets Decision Recommendation System:A Survey and Perspective
13
作者 Qingyuan Ji Xiaoyue Wen +2 位作者 Junchen Jin Yongdong Zhu Yisheng Lv 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第10期2043-2058,共16页
Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal ... Urban traffic control is a multifaceted and demanding task that necessitates extensive decision-making to ensure the safety and efficiency of urban transportation systems.Traditional approaches require traffic signal professionals to manually intervene on traffic control devices at the intersection level,utilizing their knowledge and expertise.However,this process is cumbersome,labor-intensive,and cannot be applied on a large network scale.Recent studies have begun to explore the applicability of recommendation system for urban traffic control,which offer increased control efficiency and scalability.Such a decision recommendation system is complex,with various interdependent components,but a systematic literature review has not yet been conducted.In this work,we present an up-to-date survey that elucidates all the detailed components of a recommendation system for urban traffic control,demonstrates the utility and efficacy of such a system in the real world using data and knowledgedriven approaches,and discusses the current challenges and potential future directions of this field. 展开更多
关键词 Recommendation system traffic control traffic perception traffic prediction
下载PDF
Recognition of occluded pedestrians from the driver's perspective for extending sight distance and ensuring driving safety at signal-free intersections 被引量:1
14
作者 Kun Qie Jianyu Wang +2 位作者 Zhihong Li Zinan Wang Wei Luo 《Digital Transportation and Safety》 2024年第2期65-74,共10页
Urban intersections without traffic signals are prone to accidents involving motor vehicles and pedestrians.Utilizing computer vision technology to detect pedestrians crossing the street can effectively mitigate the o... Urban intersections without traffic signals are prone to accidents involving motor vehicles and pedestrians.Utilizing computer vision technology to detect pedestrians crossing the street can effectively mitigate the occurrence of such accidents.Faced with the complex issue of pedestrian occlusion at signal-free intersections,this paper proposes a target detection model called Head feature And ENMS fusion Residual connection For CNN(HAERC).Specifically,the model includes a head feature module that detects occluded pedestrians by integrating their head features with the overall target.Additionally,to address the misselection caused by overlapping candidate boxes in two-stage target detection models,an Extended Non-Maximum Suppression classifier(ENMS)with expanded IoU thresholds is proposed.Finally,leveraging the CityPersons dataset and categorizing it into four classes based on occlusion levels(heavy,reasonable,partial,bare),the HAERC model is experimented on these classes and compared with baseline models.Experimental results demonstrate that HAERC achieves superior False Positives Per Image(FPPI)values of 46.64%,9.59%,9.43%,and 6.78%respectively for the four classes,outperforming all baseline models.The study concludes that the HAERC model effectively identifies occluded pedestrians in the complex environment of urban intersections without traffic signals,thereby enhancing safety for long-range driving at such intersections. 展开更多
关键词 Traffic safety Signal-free intersections Pedestrian crossing Occlusion recognition HAERC ENMS
下载PDF
Classified VPN Network Traffic Flow Using Time Related to Artificial Neural Network
15
作者 Saad Abdalla Agaili Mohamed Sefer Kurnaz 《Computers, Materials & Continua》 SCIE EI 2024年第7期819-841,共23页
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and c... VPNs are vital for safeguarding communication routes in the continually changing cybersecurity world.However,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork data.We present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service assaults.We compile a broad dataset of labeled VPN traffic flows from various apps and usage patterns.Next,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous actions.To effectively process and categorize encrypted packets,the neural network model has input,hidden,and output layers.We use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral properties.We also use cutting-edge optimizationmethods to optimize network characteristics and performance.The suggested ANN-based categorization method is extensively tested and analyzed.Results show the model effectively classifies VPN traffic types.We also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%accuracy.This study improves VPN security and protects against new cyberthreats.Classifying VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security problems.This study advances network security and lays the groundwork for ANN-based cybersecurity solutions. 展开更多
关键词 VPN network traffic flow ANN classification intrusion detection data exfiltration encrypted traffic feature extraction network security
下载PDF
Spatiotemporal Prediction of Urban Traffics Based on Deep GNN
16
作者 Ming Luo Huili Dou Ning Zheng 《Computers, Materials & Continua》 SCIE EI 2024年第1期265-282,共18页
Traffic prediction already plays a significant role in applications like traffic planning and urban management,but it is still difficult to capture the highly non-linear and complicated spatiotemporal correlations of ... Traffic prediction already plays a significant role in applications like traffic planning and urban management,but it is still difficult to capture the highly non-linear and complicated spatiotemporal correlations of traffic data.As well as to fulfil both long-termand short-termprediction objectives,a better representation of the temporal dependency and global spatial correlation of traffic data is needed.In order to do this,the Spatiotemporal Graph Neural Network(S-GNN)is proposed in this research as amethod for traffic prediction.The S-GNN simultaneously accepts various traffic data as inputs and investigates the non-linear correlations between the variables.In terms of modelling,the road network is initially represented as a spatiotemporal directed graph,with the features of the samples at the time step being captured by a convolution module.In order to assign varying attention weights to various adjacent area nodes of the target node,the adjacent areas information of nodes in the road network is then aggregated using a graph network.The data is output using a fully connected layer at the end.The findings show that S-GNN can improve short-and long-term traffic prediction accuracy to a greater extent;in comparison to the control model,the RMSE of S-GNN is reduced by about 0.571 to 9.288 and the MAE(Mean Absolute Error)by about 0.314 to 7.678.The experimental results on two real datasets,Pe MSD7(M)and PEMS-BAY,also support this claim. 展开更多
关键词 Urban traffic TRAFFIC temporal correlation GNN PREDICTION
下载PDF
Impacts of bus holding strategy on the performance and pollutant emissions of a two-lane mixed traffic system
17
作者 Yanfeng Qiao Ronghan Yao +1 位作者 Baofeng Pan Yu Xue 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期236-248,共13页
This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route,as well as the impacts on the characteristics of pollutant emissio... This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route,as well as the impacts on the characteristics of pollutant emissions of passenger cars.The dynamic behaviors of these two types of vehicles are described using cellular automata(CA)models under open boundary conditions.Numerical simulations are carried out to obtain the phase diagrams of the bus system and the trajectories of buses and passenger cars before and after the implementation of the bus holding strategy under different probabilities of passenger cars entering a two-lane mixed traffic system.Then,we analyze the flow rate,satisfaction rate,and pollutant emission rates of passenger cars together with the performance of a mixed traffic system.The results show that the bus holding strategy can effectively alleviate bus bunching,whereas it has no significant impact on the flow rate and pollutant emission rates of passenger cars;the flow rate,satisfaction rate,and pollutant emission rates of passenger cars for either the traffic system or for each lane are influenced by the bus departure interval and the number of passengers arriving at bus stops. 展开更多
关键词 mixed traffic flow bus holding strategy cellular automata traffic emissions
下载PDF
Segment routing for traffic engineering and effective recovery in low-earth orbit satellite constellations
18
作者 Shengyu Zhang Xiaoqian Li Kwan Lawrence Yeung 《Digital Communications and Networks》 SCIE CSCD 2024年第3期706-715,共10页
Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in in... Low-Earth Orbit Satellite Constellations(LEO-SCs)provide global,high-speed,and low latency Internet access services,which bridges the digital divide in the remote areas.As inter-satellite links are not supported in initial deployment(i.e.the Starlink),the communication between satellites is based on ground stations with radio frequency signals.Due to the rapid movement of satellites,this hybrid topology of LEO-SCs and ground stations is time-varying,which imposes a major challenge to uninterrupted service provisioning and network management.In this paper,we focus on solving two notable problems in such a ground station-assisted LEO-SC topology,i.e.,traffic engineering and fast reroute,to guarantee that the packets are forwarded in a balanced and uninterrupted manner.Specifically,we employ segment routing to support the arbitrary path routing in LEO-SCs.To solve the traffic engineering problem,we proposed two source routings with traffic splitting algorithms,Delay-Bounded Traffic Splitting(DBTS)and DBTS+,where DBTS equally splits a flow and DBTS+favors shorter paths.Simu-lation results show that DBTS+can achieve about 30%lower maximum satellite load at the cost of about 10%more delay.To guarantee the fast recovery of failures,two fast reroute mechanisms,Loop-Free Alternate(LFA)and LFA+,are studied,where LFA pre-computes an alternate next-hop as a backup while LFA+finds a 2-segment backup path.We show that LFA+can increase the percentage of protection coverage by about 15%. 展开更多
关键词 Fast reroute Low-earth orbit satellite constellation Segment routing Traffic engineering Traffic splitting
下载PDF
Network Traffic Synthesis and Simulation Framework for Cybersecurity Exercise Systems
19
作者 Dong-Wook Kim Gun-Yoon Sin +3 位作者 Kwangsoo Kim Jaesik Kang Sun-Young Im Myung-Mook Han 《Computers, Materials & Continua》 SCIE EI 2024年第9期3637-3653,共17页
In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in ... In the rapidly evolving field of cybersecurity,the challenge of providing realistic exercise scenarios that accurately mimic real-world threats has become increasingly critical.Traditional methods often fall short in capturing the dynamic and complex nature of modern cyber threats.To address this gap,we propose a comprehensive framework designed to create authentic network environments tailored for cybersecurity exercise systems.Our framework leverages advanced simulation techniques to generate scenarios that mirror actual network conditions faced by professionals in the field.The cornerstone of our approach is the use of a conditional tabular generative adversarial network(CTGAN),a sophisticated tool that synthesizes realistic synthetic network traffic by learning fromreal data patterns.This technology allows us to handle technical components and sensitive information with high fidelity,ensuring that the synthetic data maintains statistical characteristics similar to those observed in real network environments.By meticulously analyzing the data collected from various network layers and translating these into structured tabular formats,our framework can generate network traffic that closely resembles that found in actual scenarios.An integral part of our process involves deploying this synthetic data within a simulated network environment,structured on software-defined networking(SDN)principles,to test and refine the traffic patterns.This simulation not only facilitates a direct comparison between the synthetic and real traffic but also enables us to identify discrepancies and refine the accuracy of our simulations.Our initial findings indicate an error rate of approximately 29.28%between the synthetic and real traffic data,highlighting areas for further improvement and adjustment.By providing a diverse array of network scenarios through our framework,we aim to enhance the exercise systems used by cybersecurity professionals.This not only improves their ability to respond to actual cyber threats but also ensures that the exercise is cost-effective and efficient. 展开更多
关键词 Cybersecurity exercise synthetic network traffic generative adversarial network traffic generation software-defined networking
下载PDF
Data-driven human and bot recognition from web activity logs based on hybrid learning techniques
20
作者 Marek Gajewski Olgierd Hryniewicz +5 位作者 Agnieszka Jastrzębska Mariusz Kozakiewicz Karol Opara Jan Wojciech Owsiński Sławomir Zadrozny Tomasz Zwierzchowski 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1178-1188,共11页
Distinguishing between web traffic generated by bots and humans is an important task in the evaluation of online marketing campaigns.One of the main challenges is related to only partial availability of the performanc... Distinguishing between web traffic generated by bots and humans is an important task in the evaluation of online marketing campaigns.One of the main challenges is related to only partial availability of the performance metrics:although some users can be unambiguously classified as bots,the correct label is uncertain in many cases.This calls for the use of classifiers capable of explaining their decisions.This paper demonstrates two such mechanisms based on features carefully engineered from web logs.The first is a man-made rule-based system.The second is a hierarchical model that first performs clustering and next classification using human-centred,interpretable methods.The stability of the proposed methods is analyzed and a minimal set of features that convey the classdiscriminating information is selected.The proposed data processing and analysis methodology are successfully applied to real-world data sets from online publishers. 展开更多
关键词 Web logs Classification CLUSTERING Web traffic Bots INTERPRETABILITY
下载PDF
上一页 1 2 112 下一页 到第
使用帮助 返回顶部