BCL2 is a key regulator of apoptosis.Our previous work has demonstrated that special AT-rich sequence-binding protein 1 (SATB1) is positively correlated with BCL2 expression.In the present study,we report a new SATB...BCL2 is a key regulator of apoptosis.Our previous work has demonstrated that special AT-rich sequence-binding protein 1 (SATB1) is positively correlated with BCL2 expression.In the present study,we report a new SATB1 binding site located between P1 and P2 promoters of the BCL2 gene.The candidate SATB1 binding sequence predicted by bioinformatic analysis was investigated in vitro and in vivo by electrophoretic gel mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP).One 25-bp sequence,named SB1,was confirmed to be SATB1 binding site.The regulatory function of SB1 and its relevance to SATB1 were further examed with dual-luciferase reporter assay system in Jurkat cells.We found that SB1 could negatively regulate reporter gene activity.Mutation of SATB1 binding site further repressed the activity.Knockdown of SATB1 also enhanced this negative effect of SB1.Our data indicate that the SB1 sequence possesses negative transcriptional regulatory function and this function can be antagonized by SATB1.展开更多
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord...Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.展开更多
Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biol...Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development.展开更多
Introduction: Parkinson's disease (PD) is a chronic, age-re- lated neurodegenerative disorder that affects 1-2% of the population over the age of 65. PD is characterised by the progressive degeneration of nigrostr...Introduction: Parkinson's disease (PD) is a chronic, age-re- lated neurodegenerative disorder that affects 1-2% of the population over the age of 65. PD is characterised by the progressive degeneration of nigrostriatal dopaminergic (DA) neurons. This leads to disabling motor symptoms, due to the striatal DA denervation. Despite decades of research, there is still no therapy that can slow, stop or regenerate the dying midbrain DA neurons in PD.展开更多
Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the...Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the considerable difference in the development of a gravitropic set-point angle(GSA)between self-rooted apple stock and seedling rootstock.Therefore,it is crucial to study the molecular mechanism of adventitious root GSA in self-rooted apple stock for breeding self-rooted and deep-rooted apple rootstock cultivars.An apple auxin response factor MdARF19 functioned to establish the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.MdARF19 bound directly to the MdPIN7 promoter,activating its transcriptional expression and thus regulating the formation of the adventitious root GSA in 12-2 self-rooted apple stock.However,MdARF19 influenced the expression of auxin efflux carriers(MdPIN3 and MdPIN10)and the establishment of adventitious root GSA of self-rooted apple stock in response to gravity signals by direct activation of MdFLP.Our findings provide new information on the transcriptional regulation of MdPIN7 by auxin response factor MdARF19 in the regulation of the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.展开更多
Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regu...Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05.展开更多
Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a comm...Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a common characteristic of Gossypium genus and its relatives,appearing as visible dark opaque dots in most tissues and organs of cotton plants.Secondary metabolites,such as gossypol,synthesized and stored in the cavities of pigment glands act as natural phytoalexins,but are toxic to humans and other monogastric animals.However,only a few cotton genes have been identified as being associated with pigment gland morphogenesis to date,and the developmental processes and regulatory mechanism involved in pigment gland formation remain largely unclear.Here,the research progress on the process of pigment gland morphogenesis and the genetic basis of cotton pigment glands is reviewed,for providing a theoretical basis for cultivating cotton with the ideal pigment gland trait.展开更多
Objectives To investigate the impact of acute energetic stress(acute HIIE and fasting)on ERRγ,PPARβ,NR1D1,NR4A1,and TFEB in human skeletal muscle.Methods The current study performed secondary analyses using muscle b...Objectives To investigate the impact of acute energetic stress(acute HIIE and fasting)on ERRγ,PPARβ,NR1D1,NR4A1,and TFEB in human skeletal muscle.Methods The current study performed secondary analyses using muscle biopsy samples from two previously published studies:study 1)leg muscle biopsies from nine men and eight women were obtained pre and 3 h following acute high-intensity interval cycling exercise(HIIE);study 2)leg muscle biopsies were obtained from nine men pre-,during,and post-an 8 h fast with or without 2 h of arm ergometer exercise.RT-PCR was performed on samples from each study to determine the mRNA expression of ERRγ,PPARβ,NR1D1,NR4A1,and TFEB.Additionally,we retrieved data from meta-analyzed human muscle gene expression using the publicly available database MetaMex.Results PGC-1α(p<0.01,d=1.98)and NR4A1(p<0.01,d=1.36)mRNA expression significantly increased while TFEB(p≤0.05,d=0.70)decreased following HIIE.Significant decreases in NR4A1 and NR1D1 mRNA expression were observed following an 8 h fast.Our MetaMex analyses revealed significant increases(p<0.05)in PGC-1αand NR4A1 expression following aerobic and resistance exercise,and in PPARβexpression following resistance exercise.Conclusions Our data indicate that acute HIIE stimulates increases in NR4A1 and PGC-1αand decreases in TFEB mRNA expression in human skeletal muscle.Additionally,a short term(8 h)fast reduced the mRNA expression of the transcriptional regulators NR4A1 and NR1D1–potentially as a mechanism of decreasing mitochondrial biogenesis to reduce energy expenditure during a period of restricted energy availability.展开更多
Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revea...Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revealed that 9 out of the 10 mitochondrial genes, except for atp6, showed no difference in different tissues of the corresponding materials of NCα CMS system and that they might be constitutively expressed genes. Eight genes, such as orf139, orf222, atpl, cox1, cox2, cob, rm5S, and rm26S, showed no difference among the three tissues of all the materials detected. So the expression of these eight genes was not regulated by nuclear genes and was not tissue-specific. The transcripts of atp9 were identical among different tissues, but diverse among different materials, indicating that transcription of atp9 was neither controlled by nuclear gene nor tissue-specific. Gene atp6 displayed similar transcripts with the same size among different tissues of all the materials but differed in abundance among tissues of corresponding materials and its expression might be tissue-specific under regulation of nuclear gene. Moreover, three transcripts of orf222 were detected in the floral buds of NCa cms and fertile F1, but no transcript was detected in floral buds of the maintainer line.The transcription of orf139 was similar to that of orf222 but only two transcripts of 0.8 kb and 0.6 kb were produced. The atp9 probe detected a single transcript of 0.6 kb in NCa cms and in maintainer line and an additional transcript of 1.2 kb in fertile F1. The relationship of expression of orf222, orf139, and atp9 with NCa sterility was discussed.展开更多
Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 y...Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.展开更多
Human X-box binding protein 1 (XBP1), an important transcription factor, participates in many signal transduction processes. To further investigate the biological function of XBP1, sequences of XBP1 promoter and its...Human X-box binding protein 1 (XBP1), an important transcription factor, participates in many signal transduction processes. To further investigate the biological function of XBP1, sequences of XBP1 promoter and its two deletion mutants were first determined using bioinformatic analysis. The report vectors containing XBP1 promoter and its deletion mutants were then constructed, namely, p1-XBPlp, p2-XBPlp, and p3-XBPlp. Each reporter vector was separately transfected into HepG2, L02, K562, SMMC-7721, HSF, and Lipocyte lto Cell line using FuGENE 6 transfection reagents. The activity of chloramphenicol acetyltransferase (CAT) in each group of transfected cells was detected by ELISA assay, which in turn reflects the transcription activity of the XBP1 gene promoter. The activity involving p3-XBPlp was the highest in HepG2, which was 12.4-fold of that of pCAT3-Basic. The activities of p3-XBPlp in K562 and SMMC-7721 were the second and the third highest, which were 10.9-fold and 10.0-fold of that of the pCAT3-Basic, respectively. The CAT activity in L02 was lower than that in the above-mentioned abnormal cell, and no reporter activity was detected in HSF and Ito Cell. The XBP1 transcription and expression in K562, HepG2 and SMMC-7721 were found to be higher than that in L02, HSF and Ito cells, based on the results of real-time RT-PCR and Western blot. The XBP1 transcription and expression in L02, HSF was lower, whereas that in Ito cells was totally lacking. The result was similar to that of CAT-ELISA. Therefore, the XBP1 gene promoter can drive its downstream gene expression and its activity is cell line-dependent. The core sequence of XBP1 promoter was found between -227bp and 66bp sequence. This sequence was closely associated with the transcriptional activity of XBP1 promoter.展开更多
The nuclear receptor PPARs are fundamentally important for energy homeostasis. Through their distinct yet overlapping functions and tissue distribution, the PPARs regulate many aspects of energy metabolism at the tran...The nuclear receptor PPARs are fundamentally important for energy homeostasis. Through their distinct yet overlapping functions and tissue distribution, the PPARs regulate many aspects of energy metabolism at the transcriptional level. Functional impairment or dysregulation of these receptors leads to a variety of metabolic diseases, while their ligands offer many metabolic benefits. Studies of these receptors have advanced our knowledge of the transcriptional basis of energy metabolism and helped us understand the pathogenic mechanisms of metabolic syndrome.展开更多
Atherosclerosis is a progressive human pathology that encompasses several stages of development. Endothelial dysfunction represents an early sign of lesion within the vasculature. A number of risk factors for atherosc...Atherosclerosis is a progressive human pathology that encompasses several stages of development. Endothelial dysfunction represents an early sign of lesion within the vasculature. A number of risk factors for atherosclero- sis, including hyperlipidemia, diabetes, and hypertension, target the vascular endothelium by re-programming its transcriptome. These profound alterations taking place on the chromatin rely on the interplay between sequence specific transcription factors and the epigenetic machinery. The epigenetic machinery, in turn, tailor individual transcription events key to atherogenesis to intrinsic and extrinsic insults dictating the development of atheroscle- rotic lesions. This review summarizes our current understanding of the involvement of the epigenetic machinery in endothelial injury during atherogenesis.展开更多
The speed of flower opening is closely related to their ornamental period.Ethylene functions as a negative regulator involved in the regulation of the petal expansion process.In this study,we isolated a NF-YC transcri...The speed of flower opening is closely related to their ornamental period.Ethylene functions as a negative regulator involved in the regulation of the petal expansion process.In this study,we isolated a NF-YC transcription factor gene,RhNF-YC9,fromrose petals.RhNF-YC9 expression was induced at the early stages of flower opening but was inhibited by ethylene treatment.Silencing RhNF-YC9 decreased the speed of petal expansion from stage 2 to stage 5.The expressions of 11 cell expansion-related genes involved in cell wall loosening,cell turgor modulation,and cytoskeleton remodeling were significantly down-regulated in RhNF-YC9-silenced petals.We also found that silencing RhNF-YC9 decreased the expression of gibberellin acid(GA)biosynthetic gene RhGA20ox while significantly increasing the transcripts of GA catabolic gene RhGA2ox,reducing the accumulation of GA4 and GA7.The influence of ethylene treatment on the expression of RhGA20ox and RhGA2ox showed the same trend.These results together suggested that RhNF-YC9 positively regulated the speed of petal expansion and mediated the crosstalk between ethylene and GA.Our findings revealed a new insight into the function of NF-YC transcription factors involved in ethylene-regulated petal expansion.展开更多
Maize(Zea mays L.)is one of the most important food crops in the world,and starch is the main component of its endosperm.Transcriptional regulation plays a vital role in starch biosynthesis.However,it is not well unde...Maize(Zea mays L.)is one of the most important food crops in the world,and starch is the main component of its endosperm.Transcriptional regulation plays a vital role in starch biosynthesis.However,it is not well understood in maize.We report the identification of the transcription factor ZmNAC126 and its role in regulation of starch synthesis in maize.Transcriptional expression of ZmNAC126 was higher in maize endosperm and kernels than in roots or stems.ZmNAC126 shared a similar expression pattern with starch synthesis genes during seed development,and its expression pattern was also consistent with the accumulation of starch.ZmNAC126 is a typical transcription factor with a transactivation domain between positions 201 and 227 of the amino acid sequence,is located in the nucleus,and binds to CACG repeats in vitro.Yeast one-hybrid assay revealed that ZmNAC126 bound the promoters of ZmGBSSI,ZmSSIIa,ZmSSIV,ZmISA1,and ZmISA2.Transient overexpression of ZmNAC126 in maize endosperm increased the activities of promoters pZmSh2,pZmBt2,pZmGBSSI,pZmSSIIIa,and pZmBT1 but inhibited the activities of pZmISA1 and pZmISA2.ZmNAC126 thus acts in starch synthesis by transcriptionally regulating targeted starch synthesis-related genes in maize kernels.展开更多
Cellulose, a major constituent of plant biomass, is synthesized by a cellulose synthase complex. It has been demonstrated that MYB genes transcriptionally regulate cellulose synthase in Arabidopsis. However, little is...Cellulose, a major constituent of plant biomass, is synthesized by a cellulose synthase complex. It has been demonstrated that MYB genes transcriptionally regulate cellulose synthase in Arabidopsis. However, little is known about this process in tomato. Here, two MYB (SIMYB1/2) and three cellulose synthase (CESA) (SICESA41516) genes were isolated. SIMYB1/2 and SICESA4/5/6 accumulation was found to correspond to cellulose accumulation in different tissues of tomato. Dual luciferase assays indicated that these two MYBs were transcriptional activators that interact with promoters of SICESA4/5/6. Moreover, SIMYB2 could also activate promoters of SIMYB1/2, suggesting the possible underlying auto-activation mech- anisms for MYB transcription factors. Transient over-expression of SlMYB1/2 in Nicotiana tabacum up-regulated tobacco endogenous NtCESA genes and increased cellulose accumulation. The function of SIMYB112 was further investigated using stable transformation and the results indicated that N. tabacum lines heterologous expressing SIMYB1/2 displayed a pleiotropic phenotype, long and narrow leaves, with NtCESA induced and significant increase of cellulose. In conclusion, our data suggest that tomato SIMYB1/2 have transcriptional regulatory roles in cellulose biosynthesis and SIMYB2 was more effective than SIMYB1, which may due to the transcriptional activation by SIMYB2 on SIMYB1 and itself.展开更多
The hepatocellular carcinoma suppressor 1 (HCCS1) gene was identified by both positional cloning from a predominant region of loss of heterozygosity (17p 13.3) in liver cancer and by functional screening for genes...The hepatocellular carcinoma suppressor 1 (HCCS1) gene was identified by both positional cloning from a predominant region of loss of heterozygosity (17p 13.3) in liver cancer and by functional screening for genes affecting cell proliferation in large-scale transfection assays. Its overexpression results in inhibition of cell proliferation in cell culture and tumor growth in nude mice. To understand its transcription regulation, the promoter architecture has been dissected in detail. The major start of transcription was mapped by primer extension to a C residue, 177 nucleotides upstream of the ATG codon. By assessing the promoter activity of a set of linker-scanning mutants of the minimal promoter (-60 to +148 region) in a transient transfection assay, we found that the +1 to + 40 region is critical to HCCS1 gene transcription, containing binding sites for transcription factors NF-kB (-21 to +7 and +40 to +26), p53 (+29 to +9) and ETS (+4 to +20 and +23 to +39). Biochemical and molecular analyses revealed that the ETS transcription factors ETS-2 and Elf-1 bind to the two ETS sites in situ and contribute significantly to the transcriptionally active state of the HCCS1 gene, while NF-kB, p53 and two other members of the ETS family (ETS-1 and NERF2) appear to play little role. Our observations provide insight into the mechanistic aspects of HCCS1 transcription regulation.展开更多
To understand the DNA-methylation mediated gene silencing mechanisms, we analyzed in cell culture of the promoter function of the MAGE-A1 gene, which is frequently demethylated and over-expressed in human hepatocellul...To understand the DNA-methylation mediated gene silencing mechanisms, we analyzed in cell culture of the promoter function of the MAGE-A1 gene, which is frequently demethylated and over-expressed in human hepatocellular carcinoma. We have established the correlation of the DNA methylation of the promoter CpG island with expression status of this gene in a panel of the established liver cancer cell lines. The crucial CpG dinucleotide(s) within the minimal promoter subjected to the control mediated by DNA methylation with profound biological functions was also delineated.Furthermore, a novel sequence-specific DNA-protein interaction at the -30 CpG dinucleotide upstream of the gene was found having a vital part to play in the DNA methylation mediated transcription silencing of the MAGE-A1 gene. Our results would not only provide new insights into the DNA methylation mediated mechanisms over transcription of the MAGE-A1 gene, but also pave the way for further defining the cross-talk among DNA methylation, histone modification and chromatin remodeling in detail.展开更多
Increased accumulation and/or impaired utilization of fatty acid in extra-adipose tissues are implicated in the pathogenesis of insulin resistance and type 2 diabetes. Pyruvate dehydrogenase kinase 4 (Pdk4) is a key...Increased accumulation and/or impaired utilization of fatty acid in extra-adipose tissues are implicated in the pathogenesis of insulin resistance and type 2 diabetes. Pyruvate dehydrogenase kinase 4 (Pdk4) is a key enzyme involved in fatty oxidation and energy expenditure, and its expression can be repressed by pro-inflammatory stimuli. Previously, we have shown that class II transactivator (CIITA) mediates the adverse effect of interferon gamma (IFN-7) in skeletal muscle cells by cooperating with hypermethylated in cancer 1 (HIC1) to repress silent informa- tion regulator 1 (SIRT1) transcription. Building upon this finding, we report here that CIITA interacted with HIC1 via the GTP-binding domain (GBD) while HIC1 interacted with CIITA via the BTB/POZ domain. The GBD domain was required for CIITA to repress SIRT1 transcription probably acting as a bridge for CIITA to bind to HIC1 and consequently to bind to the SIRT1 promoter. IFN-7 stimulation, CIITA over-expression, or HIC1 over- expression repressed Pdk4 promoter activity while silencing either CIITA or HIC1 normalized Pdk4 expression in the presence of IFN-7. An increase in SIRT1 expression or activity partially rescued Pdk4 expression in the pre- sence of CIITA, but SIRT1 inhibition abrogated Pdk4 normalization even in the absence of CIITA. Taken together, our data have identified a HIC1-CIITA-SIRT1 axis that regulates Pdk4 transcription in response to IFN-7 stimula- tion.展开更多
To clone and identify the proteins involved in regulating the transcription of hTERT and study the role of genes in both hTERT transcription and telomerase activity. Methods The full cDNA of COUP-TFII was clon...To clone and identify the proteins involved in regulating the transcription of hTERT and study the role of genes in both hTERT transcription and telomerase activity. Methods The full cDNA of COUP-TFII was cloned from HeLa cDNA library by hTERT promoter-based yeast one-hybrid assay and then in-frame inserted into His-tag fusion expression vector pEK318. The His-tag COUP-TFII fusion proteins were purified by Ni-NTA chromatography. The interaction of COUP-TFII with hTERT promoter in vitro was identified by electrophoretic mobility shift assay and Footprint. The role of COUP-TFII in both hTERT transcription and telomerase activity were probed through Luciferase reporter assay, Northern blot, and TRAP-PCR ELISA. Results COUP-TFII could firmly bind to the downstream E-box and the other two binding sites in hTERT promoter. Luciferase reporter assay indicated COUP-TFII could suppress hTERT promoter activity and stable introduction of COUP-TFII into HeLa cells also decreased both endogenous hTERT transcription and telomerase activity. Conclusion The human COUP-TFII can firmly bind to hTERT promoter, and inhibit telomerase activity through decreasing hTERT transcription. It will greatly facilitate understanding of telomerase regulation in normal and cancer cells展开更多
基金supported by grants from the National Natural Science Foundation of China (No. 30772490)and Special Major National Natural Science Foundation of China (No. 90919051)
文摘BCL2 is a key regulator of apoptosis.Our previous work has demonstrated that special AT-rich sequence-binding protein 1 (SATB1) is positively correlated with BCL2 expression.In the present study,we report a new SATB1 binding site located between P1 and P2 promoters of the BCL2 gene.The candidate SATB1 binding sequence predicted by bioinformatic analysis was investigated in vitro and in vivo by electrophoretic gel mobility shift assays (EMSA) and chromatin immunoprecipitation (ChIP).One 25-bp sequence,named SB1,was confirmed to be SATB1 binding site.The regulatory function of SB1 and its relevance to SATB1 were further examed with dual-luciferase reporter assay system in Jurkat cells.We found that SB1 could negatively regulate reporter gene activity.Mutation of SATB1 binding site further repressed the activity.Knockdown of SATB1 also enhanced this negative effect of SB1.Our data indicate that the SB1 sequence possesses negative transcriptional regulatory function and this function can be antagonized by SATB1.
基金supported by Guangdong Provincial Basic and Applied Basic Research Fund,No.2021A1515011299(to KT)。
文摘Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas,and between the neocortex and other regions of the brain and spinal cord.Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination,proliferation,specification,differentiation,migration,survival,axonogenesis,and synaptogenesis.These processes are precisely regulated in a tempo-spatial manner by intrinsic factors,extrinsic signals,and neural activities.The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions(such as sensory information integration,motor coordination,and cognition)but also to prevent the onset and progression of neurodevelopmental disorders(such as intellectual disability,autism spectrum disorders,anxiety,and depression).This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
基金supported by the Jiangsu Province Natural Science Foundation(Grant No.BK20201492)the Key Medical Research Project of Jiangsu Provincial Health Commission(Grant No.K2019002)the Clinical Capacity Improvement Project of Jiangsu Province People's Hospital(Grant No.JSPH-MA-2021-8).
文摘Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development.
基金supported by grants from the Irish Research Council(R15897SVH/AMS/GWO’K)+4 种基金the National University of Ireland(R16189SVH/AMS/GWO’K)Royal Irish Academy(SVH/AMS/GWO’K)Science Foundation Ireland(15/CDA/3498GWO’K)
文摘Introduction: Parkinson's disease (PD) is a chronic, age-re- lated neurodegenerative disorder that affects 1-2% of the population over the age of 65. PD is characterised by the progressive degeneration of nigrostriatal dopaminergic (DA) neurons. This leads to disabling motor symptoms, due to the striatal DA denervation. Despite decades of research, there is still no therapy that can slow, stop or regenerate the dying midbrain DA neurons in PD.
基金the National Natural Science Foundation of China(Grant Nos.32102310,32202484,and 32072520)the Shandong Key Research and Development Program,China(Grant Nos.2021LZGC007 and 2022TZXD009).
文摘Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the considerable difference in the development of a gravitropic set-point angle(GSA)between self-rooted apple stock and seedling rootstock.Therefore,it is crucial to study the molecular mechanism of adventitious root GSA in self-rooted apple stock for breeding self-rooted and deep-rooted apple rootstock cultivars.An apple auxin response factor MdARF19 functioned to establish the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.MdARF19 bound directly to the MdPIN7 promoter,activating its transcriptional expression and thus regulating the formation of the adventitious root GSA in 12-2 self-rooted apple stock.However,MdARF19 influenced the expression of auxin efflux carriers(MdPIN3 and MdPIN10)and the establishment of adventitious root GSA of self-rooted apple stock in response to gravity signals by direct activation of MdFLP.Our findings provide new information on the transcriptional regulation of MdPIN7 by auxin response factor MdARF19 in the regulation of the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.
基金supported by the Project from the Ministry of Agriculture of China for Transgenic Research(2014ZX0800927B)the National Natural Science Foundation of China(31871667).
文摘Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05.
基金National Key Technology R&D Program of China(2022YFF1001403)National Science Foundation of China(32101764).
文摘Cotton has enormous economic potential,providing high-quality protein,oil,and fibre.But the comprehensive utilization of cottonseed is limited by the presence of pigment gland and its inclusion.Pigment gland is a common characteristic of Gossypium genus and its relatives,appearing as visible dark opaque dots in most tissues and organs of cotton plants.Secondary metabolites,such as gossypol,synthesized and stored in the cavities of pigment glands act as natural phytoalexins,but are toxic to humans and other monogastric animals.However,only a few cotton genes have been identified as being associated with pigment gland morphogenesis to date,and the developmental processes and regulatory mechanism involved in pigment gland formation remain largely unclear.Here,the research progress on the process of pigment gland morphogenesis and the genetic basis of cotton pigment glands is reviewed,for providing a theoretical basis for cultivating cotton with the ideal pigment gland trait.
基金supported by Brendon Gurd’s Discovery Grant from NSERC.
文摘Objectives To investigate the impact of acute energetic stress(acute HIIE and fasting)on ERRγ,PPARβ,NR1D1,NR4A1,and TFEB in human skeletal muscle.Methods The current study performed secondary analyses using muscle biopsy samples from two previously published studies:study 1)leg muscle biopsies from nine men and eight women were obtained pre and 3 h following acute high-intensity interval cycling exercise(HIIE);study 2)leg muscle biopsies were obtained from nine men pre-,during,and post-an 8 h fast with or without 2 h of arm ergometer exercise.RT-PCR was performed on samples from each study to determine the mRNA expression of ERRγ,PPARβ,NR1D1,NR4A1,and TFEB.Additionally,we retrieved data from meta-analyzed human muscle gene expression using the publicly available database MetaMex.Results PGC-1α(p<0.01,d=1.98)and NR4A1(p<0.01,d=1.36)mRNA expression significantly increased while TFEB(p≤0.05,d=0.70)decreased following HIIE.Significant decreases in NR4A1 and NR1D1 mRNA expression were observed following an 8 h fast.Our MetaMex analyses revealed significant increases(p<0.05)in PGC-1αand NR4A1 expression following aerobic and resistance exercise,and in PPARβexpression following resistance exercise.Conclusions Our data indicate that acute HIIE stimulates increases in NR4A1 and PGC-1αand decreases in TFEB mRNA expression in human skeletal muscle.Additionally,a short term(8 h)fast reduced the mRNA expression of the transcriptional regulators NR4A1 and NR1D1–potentially as a mechanism of decreasing mitochondrial biogenesis to reduce energy expenditure during a period of restricted energy availability.
基金This work was supported by the National High Technology R&D Project of China (No.2002AA207009) and Wuhan Dawn Project for Youth (No. 20035002016-36).
文摘Northern blot analysis was conducted with mitochondrial RNA from seedling leaves, floral buds, and developing seeds of NCa CMS, maintainer line and fertile F1 using ten mitochondrial genes as probes. The results revealed that 9 out of the 10 mitochondrial genes, except for atp6, showed no difference in different tissues of the corresponding materials of NCα CMS system and that they might be constitutively expressed genes. Eight genes, such as orf139, orf222, atpl, cox1, cox2, cob, rm5S, and rm26S, showed no difference among the three tissues of all the materials detected. So the expression of these eight genes was not regulated by nuclear genes and was not tissue-specific. The transcripts of atp9 were identical among different tissues, but diverse among different materials, indicating that transcription of atp9 was neither controlled by nuclear gene nor tissue-specific. Gene atp6 displayed similar transcripts with the same size among different tissues of all the materials but differed in abundance among tissues of corresponding materials and its expression might be tissue-specific under regulation of nuclear gene. Moreover, three transcripts of orf222 were detected in the floral buds of NCa cms and fertile F1, but no transcript was detected in floral buds of the maintainer line.The transcription of orf139 was similar to that of orf222 but only two transcripts of 0.8 kb and 0.6 kb were produced. The atp9 probe detected a single transcript of 0.6 kb in NCa cms and in maintainer line and an additional transcript of 1.2 kb in fertile F1. The relationship of expression of orf222, orf139, and atp9 with NCa sterility was discussed.
基金supported by National Health and Medical Research Council GNT1105374,GNT1137645,GNT2000766 and veski Innovation Fellowship(VIF23)to RP.
文摘Nuclear factor Y is a ubiquitous heterotrimeric transcription factor complex conserved across eukaryotes that binds to CCAAT boxes,one of the most common motifs found in gene promoters and enhancers.Over the last 30 years,research has revealed that the nuclear factor Y complex controls many aspects of brain development,including differentiation,axon guidance,homeostasis,disease,and most recently regeneration.However,a complete understanding of transcriptional regulatory networks,including how the nuclear factor Y complex binds to specific CCAAT boxes to perform its function remains elusive.In this review,we explore the nuclear factor Y complex’s role and mode of action during brain development,as well as how genomic technologies may expand understanding of this key regulator of gene expression.
基金This work was supported by the Research Foundation of Chongqing Education Committee (No. KJ070314)Innovation Foundation of Chongqing Medical University (No. CX200526)Research Foundation for Advanced Talents of Chongqing Medical Univer-sity (No. QD200316).
文摘Human X-box binding protein 1 (XBP1), an important transcription factor, participates in many signal transduction processes. To further investigate the biological function of XBP1, sequences of XBP1 promoter and its two deletion mutants were first determined using bioinformatic analysis. The report vectors containing XBP1 promoter and its deletion mutants were then constructed, namely, p1-XBPlp, p2-XBPlp, and p3-XBPlp. Each reporter vector was separately transfected into HepG2, L02, K562, SMMC-7721, HSF, and Lipocyte lto Cell line using FuGENE 6 transfection reagents. The activity of chloramphenicol acetyltransferase (CAT) in each group of transfected cells was detected by ELISA assay, which in turn reflects the transcription activity of the XBP1 gene promoter. The activity involving p3-XBPlp was the highest in HepG2, which was 12.4-fold of that of pCAT3-Basic. The activities of p3-XBPlp in K562 and SMMC-7721 were the second and the third highest, which were 10.9-fold and 10.0-fold of that of the pCAT3-Basic, respectively. The CAT activity in L02 was lower than that in the above-mentioned abnormal cell, and no reporter activity was detected in HSF and Ito Cell. The XBP1 transcription and expression in K562, HepG2 and SMMC-7721 were found to be higher than that in L02, HSF and Ito cells, based on the results of real-time RT-PCR and Western blot. The XBP1 transcription and expression in L02, HSF was lower, whereas that in Ito cells was totally lacking. The result was similar to that of CAT-ELISA. Therefore, the XBP1 gene promoter can drive its downstream gene expression and its activity is cell line-dependent. The core sequence of XBP1 promoter was found between -227bp and 66bp sequence. This sequence was closely associated with the transcriptional activity of XBP1 promoter.
文摘The nuclear receptor PPARs are fundamentally important for energy homeostasis. Through their distinct yet overlapping functions and tissue distribution, the PPARs regulate many aspects of energy metabolism at the transcriptional level. Functional impairment or dysregulation of these receptors leads to a variety of metabolic diseases, while their ligands offer many metabolic benefits. Studies of these receptors have advanced our knowledge of the transcriptional basis of energy metabolism and helped us understand the pathogenic mechanisms of metabolic syndrome.
文摘Atherosclerosis is a progressive human pathology that encompasses several stages of development. Endothelial dysfunction represents an early sign of lesion within the vasculature. A number of risk factors for atherosclero- sis, including hyperlipidemia, diabetes, and hypertension, target the vascular endothelium by re-programming its transcriptome. These profound alterations taking place on the chromatin rely on the interplay between sequence specific transcription factors and the epigenetic machinery. The epigenetic machinery, in turn, tailor individual transcription events key to atherogenesis to intrinsic and extrinsic insults dictating the development of atheroscle- rotic lesions. This review summarizes our current understanding of the involvement of the epigenetic machinery in endothelial injury during atherogenesis.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.31730079,31902059)We appreciate the expertise of Drs Peiyong Xin and Jinfang Chu(National centre for Plant Gene Research(Beijing),Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing,China)in determining the GAs contents of rose petals。
文摘The speed of flower opening is closely related to their ornamental period.Ethylene functions as a negative regulator involved in the regulation of the petal expansion process.In this study,we isolated a NF-YC transcription factor gene,RhNF-YC9,fromrose petals.RhNF-YC9 expression was induced at the early stages of flower opening but was inhibited by ethylene treatment.Silencing RhNF-YC9 decreased the speed of petal expansion from stage 2 to stage 5.The expressions of 11 cell expansion-related genes involved in cell wall loosening,cell turgor modulation,and cytoskeleton remodeling were significantly down-regulated in RhNF-YC9-silenced petals.We also found that silencing RhNF-YC9 decreased the expression of gibberellin acid(GA)biosynthetic gene RhGA20ox while significantly increasing the transcripts of GA catabolic gene RhGA2ox,reducing the accumulation of GA4 and GA7.The influence of ethylene treatment on the expression of RhGA20ox and RhGA2ox showed the same trend.These results together suggested that RhNF-YC9 positively regulated the speed of petal expansion and mediated the crosstalk between ethylene and GA.Our findings revealed a new insight into the function of NF-YC transcription factors involved in ethylene-regulated petal expansion.
基金supported by the National Natural Science Foundation of China(31571757)the National Key Basic Research Program of China(2014CB138202)。
文摘Maize(Zea mays L.)is one of the most important food crops in the world,and starch is the main component of its endosperm.Transcriptional regulation plays a vital role in starch biosynthesis.However,it is not well understood in maize.We report the identification of the transcription factor ZmNAC126 and its role in regulation of starch synthesis in maize.Transcriptional expression of ZmNAC126 was higher in maize endosperm and kernels than in roots or stems.ZmNAC126 shared a similar expression pattern with starch synthesis genes during seed development,and its expression pattern was also consistent with the accumulation of starch.ZmNAC126 is a typical transcription factor with a transactivation domain between positions 201 and 227 of the amino acid sequence,is located in the nucleus,and binds to CACG repeats in vitro.Yeast one-hybrid assay revealed that ZmNAC126 bound the promoters of ZmGBSSI,ZmSSIIa,ZmSSIV,ZmISA1,and ZmISA2.Transient overexpression of ZmNAC126 in maize endosperm increased the activities of promoters pZmSh2,pZmBt2,pZmGBSSI,pZmSSIIIa,and pZmBT1 but inhibited the activities of pZmISA1 and pZmISA2.ZmNAC126 thus acts in starch synthesis by transcriptionally regulating targeted starch synthesis-related genes in maize kernels.
基金supported by the International Science & Technology Cooperation Program of China (2011DFB31580)the National Basic Research Program of China (2013CB127104)the Natural Science Foundation of Zhejiang Province,China (LR16C150001)
文摘Cellulose, a major constituent of plant biomass, is synthesized by a cellulose synthase complex. It has been demonstrated that MYB genes transcriptionally regulate cellulose synthase in Arabidopsis. However, little is known about this process in tomato. Here, two MYB (SIMYB1/2) and three cellulose synthase (CESA) (SICESA41516) genes were isolated. SIMYB1/2 and SICESA4/5/6 accumulation was found to correspond to cellulose accumulation in different tissues of tomato. Dual luciferase assays indicated that these two MYBs were transcriptional activators that interact with promoters of SICESA4/5/6. Moreover, SIMYB2 could also activate promoters of SIMYB1/2, suggesting the possible underlying auto-activation mech- anisms for MYB transcription factors. Transient over-expression of SlMYB1/2 in Nicotiana tabacum up-regulated tobacco endogenous NtCESA genes and increased cellulose accumulation. The function of SIMYB112 was further investigated using stable transformation and the results indicated that N. tabacum lines heterologous expressing SIMYB1/2 displayed a pleiotropic phenotype, long and narrow leaves, with NtCESA induced and significant increase of cellulose. In conclusion, our data suggest that tomato SIMYB1/2 have transcriptional regulatory roles in cellulose biosynthesis and SIMYB2 was more effective than SIMYB1, which may due to the transcriptional activation by SIMYB2 on SIMYB1 and itself.
基金grants to Jing De Zhu from the Shanghai Science Foundation (04DZ14006 , 05DZ19318) the National Science Foundation (30450001, 30570850 , 10574134) the National Research Program for Basic Research of China (2004CB518804 , 2002CB713700).
文摘The hepatocellular carcinoma suppressor 1 (HCCS1) gene was identified by both positional cloning from a predominant region of loss of heterozygosity (17p 13.3) in liver cancer and by functional screening for genes affecting cell proliferation in large-scale transfection assays. Its overexpression results in inhibition of cell proliferation in cell culture and tumor growth in nude mice. To understand its transcription regulation, the promoter architecture has been dissected in detail. The major start of transcription was mapped by primer extension to a C residue, 177 nucleotides upstream of the ATG codon. By assessing the promoter activity of a set of linker-scanning mutants of the minimal promoter (-60 to +148 region) in a transient transfection assay, we found that the +1 to + 40 region is critical to HCCS1 gene transcription, containing binding sites for transcription factors NF-kB (-21 to +7 and +40 to +26), p53 (+29 to +9) and ETS (+4 to +20 and +23 to +39). Biochemical and molecular analyses revealed that the ETS transcription factors ETS-2 and Elf-1 bind to the two ETS sites in situ and contribute significantly to the transcriptionally active state of the HCCS1 gene, while NF-kB, p53 and two other members of the ETS family (ETS-1 and NERF2) appear to play little role. Our observations provide insight into the mechanistic aspects of HCCS1 transcription regulation.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2002AA2Z3352)the Major State Basic Research Development Program of China(973 Program)(G1998051004)the Science Foundation of Shanghai Municipal Government(02DJ14056)to Jing De ZHU.
文摘To understand the DNA-methylation mediated gene silencing mechanisms, we analyzed in cell culture of the promoter function of the MAGE-A1 gene, which is frequently demethylated and over-expressed in human hepatocellular carcinoma. We have established the correlation of the DNA methylation of the promoter CpG island with expression status of this gene in a panel of the established liver cancer cell lines. The crucial CpG dinucleotide(s) within the minimal promoter subjected to the control mediated by DNA methylation with profound biological functions was also delineated.Furthermore, a novel sequence-specific DNA-protein interaction at the -30 CpG dinucleotide upstream of the gene was found having a vital part to play in the DNA methylation mediated transcription silencing of the MAGE-A1 gene. Our results would not only provide new insights into the DNA methylation mediated mechanisms over transcription of the MAGE-A1 gene, but also pave the way for further defining the cross-talk among DNA methylation, histone modification and chromatin remodeling in detail.
基金supported,in part,by the National Natural Science Foundation of China(31200645)the Natural Science Foundation of Jiangsu Province(BK20141498)a grant from Jiangsu Jiankang Vocational University(JK201405)
文摘Increased accumulation and/or impaired utilization of fatty acid in extra-adipose tissues are implicated in the pathogenesis of insulin resistance and type 2 diabetes. Pyruvate dehydrogenase kinase 4 (Pdk4) is a key enzyme involved in fatty oxidation and energy expenditure, and its expression can be repressed by pro-inflammatory stimuli. Previously, we have shown that class II transactivator (CIITA) mediates the adverse effect of interferon gamma (IFN-7) in skeletal muscle cells by cooperating with hypermethylated in cancer 1 (HIC1) to repress silent informa- tion regulator 1 (SIRT1) transcription. Building upon this finding, we report here that CIITA interacted with HIC1 via the GTP-binding domain (GBD) while HIC1 interacted with CIITA via the BTB/POZ domain. The GBD domain was required for CIITA to repress SIRT1 transcription probably acting as a bridge for CIITA to bind to HIC1 and consequently to bind to the SIRT1 promoter. IFN-7 stimulation, CIITA over-expression, or HIC1 over- expression repressed Pdk4 promoter activity while silencing either CIITA or HIC1 normalized Pdk4 expression in the presence of IFN-7. An increase in SIRT1 expression or activity partially rescued Pdk4 expression in the pre- sence of CIITA, but SIRT1 inhibition abrogated Pdk4 normalization even in the absence of CIITA. Taken together, our data have identified a HIC1-CIITA-SIRT1 axis that regulates Pdk4 transcription in response to IFN-7 stimula- tion.
文摘To clone and identify the proteins involved in regulating the transcription of hTERT and study the role of genes in both hTERT transcription and telomerase activity. Methods The full cDNA of COUP-TFII was cloned from HeLa cDNA library by hTERT promoter-based yeast one-hybrid assay and then in-frame inserted into His-tag fusion expression vector pEK318. The His-tag COUP-TFII fusion proteins were purified by Ni-NTA chromatography. The interaction of COUP-TFII with hTERT promoter in vitro was identified by electrophoretic mobility shift assay and Footprint. The role of COUP-TFII in both hTERT transcription and telomerase activity were probed through Luciferase reporter assay, Northern blot, and TRAP-PCR ELISA. Results COUP-TFII could firmly bind to the downstream E-box and the other two binding sites in hTERT promoter. Luciferase reporter assay indicated COUP-TFII could suppress hTERT promoter activity and stable introduction of COUP-TFII into HeLa cells also decreased both endogenous hTERT transcription and telomerase activity. Conclusion The human COUP-TFII can firmly bind to hTERT promoter, and inhibit telomerase activity through decreasing hTERT transcription. It will greatly facilitate understanding of telomerase regulation in normal and cancer cells