In order to make the numerical calculation of viscous flows more convenient for the flows in channel with complicated profile governing equations expressed in the arbitrary curvilinear coordinates were derived by mean...In order to make the numerical calculation of viscous flows more convenient for the flows in channel with complicated profile governing equations expressed in the arbitrary curvilinear coordinates were derived by means of Favre density-weighted averaged method, and a turbulent model with effect of curvature modification was also derived. The numerical calculation of laminar and turbulent flown in divergent curved channels was carried out by means of parabolizeil computation method. The calculating results were used to analyze and investigate the aerodynamic performance of talor cascades in compressors preliminarily.展开更多
A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy f...A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy force, lorentz force and marangni force as the driving forces of thefluidflow in the weld pool. The material properties are functions of temperature in this model. The simulated results show that the molten metal flowing outward is mainly caused by the marangoni convection, which makes the weld pool become wider and shallower. The comparison of the weld pool shape of SUS310 and SUS316 shows that the slight differences of the value of thermal conductivity mainly attributes to the difference of the weld pool shape and the distinction of heat transport in laminar and turbulent model makes large diversity in the simulated results.展开更多
New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper us...New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine.展开更多
Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve...Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve the simulation of the upper ocean.Thus far,several nonbreaking wave-induced mixing parameterization schemes have been proposed;however,no quantitative comparison has been performed among them.In this paper,a one-dimensional ocean model was used to compare the performances of five schemes,including those of Qiao et al.(Q),Hu and Wang(HW),Huang and Qiao(HQ),Pleskachevsky et al.(P),and Ghantous and Babanin(GB).Similar to previous studies,all of these schemes can decrease the simulated sea surface temperature(SST),increase the subsurface temperature,and deepen the mixed layer,thereby alleviating the common thermal deviation problem of the ocean model for upper ocean simulation.Among these schemes,the HQ scheme exhibited the weakest wave-induced mixing effect,and the HW scheme exhibited the strongest effect;the other three schemes exhibited roughly the same effect.In particular,the Q and P schemes exhibited nearly the same effect.In the simulation based on observations from the Ocean Weather Station Papa,the HQ scheme exhibited the best performance,followed by the Q scheme.In the experiment with the HQ scheme,the root-mean-square deviation of the simulated SST from the observations was 0.43℃,and the mixed layer depth(MLD)was 2.0 m.As a contrast,the deviations of the SST and MLD reached 1.25℃ and 8.4 m,respectively,in the experiment without wave-induced mixing.展开更多
Machine-learned augmentations to turbulence models can be advantageous for flows within the training dataset but can often cause harm outside.This lack of generalizability arises because the constants(as well as the f...Machine-learned augmentations to turbulence models can be advantageous for flows within the training dataset but can often cause harm outside.This lack of generalizability arises because the constants(as well as the functions)in a Reynolds-averaged Navier–Stokes(RANS)model are coupled,and un-constrained re-calibration of these constants(and functions)can disrupt the calibrations of the baseline model,the preservation of which is critical to the model's generalizability.To safeguard the behaviors of the baseline model beyond the training dataset,machine learning must be constrained such that basic calibrations like the law of the wall are kept intact.This letter aims to identify such constraints in two-equation RANS models so that future machine learning work can be performed without violating these constraints.We demonstrate that the identified constraints are not limiting.Furthermore,they help preserve the generalizability of the baseline model.展开更多
Cavitation is often triggered when the fluid pres- sure is lower than the vapor pressure at a local thermo- dynamic state. The present article reviews recent progress made toward developing modeling and computational ...Cavitation is often triggered when the fluid pres- sure is lower than the vapor pressure at a local thermo- dynamic state. The present article reviews recent progress made toward developing modeling and computational strat- egies for cavitation predictions under both isothermal and cryogenic conditions, with an emphasis on the attached cav- ity. The review considers alternative cavitation models along Reynolds-averaged Navier-Stokes and very lager eddy simu- lation turbulence approaches to ensure that the computational tools can handle flows of engineering interests. Observing the substantial uncertainties associated with both modeling and experimental information, surrogate modeling strategies are reviewed to assess the implications and relative impor- tance of the various modeling and materials parameters. The exchange between static and dynamic pressures under the influence of the viscous effects can have a noticeable impact on the effective shape of a solid object, which can impact the cavitation structure. The thermal effect with respect to evaporation and condensation dynamics is examined to shed light on the fluid physics associated with cryogenic cav- itation. The surrogate modeling techniques are highlighted in the context of modeling sensitivity assessment. Keywords展开更多
Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state, and the flow is frequently unsteady and turbulent. To assess the state-of-the-art of computational c...Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state, and the flow is frequently unsteady and turbulent. To assess the state-of-the-art of computational capabilities for unsteady cavitating flows, different cavitation and turbulence model combinations are conducted. The selected cavitation models include several widely-used models including one based on phenomenological argument and the other utilizing interface dynamics. The k-e turbulence model with additional implementation of the filter function and density correction function are considered to reduce the eddy viscosity according to the computed turbulence length scale and local fluid density respectively. We have also blended these alternative cavitation and lustrate that the eddy viscosity turbulence treatments, to ilnear the closure region can significantly influence the capture of detached cavity. From the experimental validations regarding the force analysis, frequency, and the cavity visualization, no single model combination performs best in all aspects. Furthermore, the implications of parameters contained in different cavitation models are investigated. The phase change process is more pronounced around the detached cavity, which is better illustrated by the interfacial dynamics model. Our study provides insight to aid further modeling development.展开更多
Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of press...Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.展开更多
Quadratic and cubic non-linear eddy-viscosity turbulence models(NLEVM) with low Reynolds number(Re) correction were presented to provide better description of anisotropic turbulence stresses in the numerical predictio...Quadratic and cubic non-linear eddy-viscosity turbulence models(NLEVM) with low Reynolds number(Re) correction were presented to provide better description of anisotropic turbulence stresses in the numerical prediction of supercavitating flows,which are accompanied with large density ratio and large-scaled swirling flow structures.The applications of the NLEVM were carried out through a self-developed cavitation codes,coupled with a cavitation model based on the transport equation of liquid phase.These NLEVM were verified capable of capturing more accurate macroscopic shape and hydrodynamic property of supercavity by the benchmark problems of supercavities over simple objects.Finally,the cubic NLEVM was further applied to the numerical prediction of supercavitating flow around a complex submerged vehicle.The corresponding cavitation behaviors were explored in detail to provide beneficial experience for further research.展开更多
In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM)...In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM).Through 18 orthogonal test cases,the optimal combination of interfacial force models,including drag force,lift force,turbulent dispersion force.The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column.The values simulated by optimized CFD model were in agreement with experimental data,and the errors were within±20%.In addition,the axial velocity,turbulent kinetic energy,bubble size distribution,and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities.This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors..展开更多
The counter-gradient terms in the computations of turbulent fluxes of heat and moisture have been included in the PBL parameterization of a regional model for monsoon prediction. Results show that inclusion of counter...The counter-gradient terms in the computations of turbulent fluxes of heat and moisture have been included in the PBL parameterization of a regional model for monsoon prediction. Results show that inclusion of counter-gradient terms has a marginal impact in the prediction of large scale monsoon circulation and rainfall rates.展开更多
By introducing the extremum law of energy dissipation rate into the investigation of turbulent flow,the closure problem for the basic equations is briefly discussed in connection with a newly suggested semi-empirical ...By introducing the extremum law of energy dissipation rate into the investigation of turbulent flow,the closure problem for the basic equations is briefly discussed in connection with a newly suggested semi-empirical turbulent flow model.As a result,several unknown functions which cannot be solved by the existed semi-empirical models are obtained in the present paper.It is shown that the turbulent flow models,as the constraints to the extremum problem, have direct influence on the final results of the primary parameters.展开更多
The paper presents the k-ε model equations of turbulence with a single set of constants chosen by the authors, which is appropriate to simulate a wide range of turbulent flows. The model validation has been performed...The paper presents the k-ε model equations of turbulence with a single set of constants chosen by the authors, which is appropriate to simulate a wide range of turbulent flows. The model validation has been performed for a number of flows and its main results are given in the paper. The turbulent mixing of flow with shear in the tangential velocity component is discussed in details. An analytical solution to the system of ordinary differential equations of the k-ε model of turbulent mixing has been found for the self-similar regime of flow. The model coefficients were chosen using simulation results for some simplest turbulent flows. The solution can be used for the verification of codes. The numerical simulation of the problem has been performed by the 2D code EGAK using this model. A good agreement of the numerical simulation results with the self-similar solution, 3D DNS results and known experimental data has been achieved. This allows stating that the k-ε model constants chosen by the authors are acceptable for the considered flow.展开更多
Despite being one of the oldest and most widely-used turbulence models in engineering computational fluid dynamics(CFD),the k-ωmodel has not been fully understood theoretically because of its high nonlinearity and co...Despite being one of the oldest and most widely-used turbulence models in engineering computational fluid dynamics(CFD),the k-ωmodel has not been fully understood theoretically because of its high nonlinearity and complex model parameter setting.Here,a multi-layer analytic expression is postulated for two lengths(stress and kinetic energy lengths),yielding an analytic solution for the k-ωmodel equations in pipe flow.Approximate local balance equations are analyzed to determine the key parameters in the solution,which are shown to be rather close to the empirically-measured values from the numerical solution of the Wilcox k-ωmodel,and hence the analytic construction is fully validated.The results provide clear evidence that the k-ωmodel sets in it a multilayer structure,which is similar to but different,in some insignificant details,from the Navier-Stokes(N-S)turbulence.This finding explains why the k-ωmodel is so popular,especially in computing the near-wall flow.Finally,the analysis is extended to a newlyrefined k-ωmodel called the structural ensemble dynamics(SED)k-ωmodel,showing that the SED k-ωmodel has improved the multi-layer structure in the outer flow but preserved the setting of the k-ωmodel in the inner region.展开更多
The regions with shear stress and mean velocity gradient of opposite sign often exist in complex turbulent shear flows.In these cases,the eddy viscosity hypothesis breaks down.Hinze regards the,departure from eddy vis...The regions with shear stress and mean velocity gradient of opposite sign often exist in complex turbulent shear flows.In these cases,the eddy viscosity hypothesis breaks down.Hinze regards the,departure from eddy viscosity hypothesis as a result from transportation of mean momentum over distance by the large structures and arrives at a shear stress expression including the second order derivatives of the mean velocity.However,his expression greatly overestimates the shear stress.This implies that the flow particles are unlikely to have enough memory of the mean momentum over distance.By assuming the departure from eddy viscosity hypothesis as a result from transportation of the shear stress contained in smaller eddies over distance by the large structures,the present author has arrived at a new shear stress expression.The shear stress estimated so far is in good agreement with the experiments.展开更多
Four turbulence models, namely, the basic and nonlinear stress-transport models and the basic and anisotropic k- epsilon models, have been tested in the case of interaction between a longitudinal vortex pair and a fla...Four turbulence models, namely, the basic and nonlinear stress-transport models and the basic and anisotropic k- epsilon models, have been tested in the case of interaction between a longitudinal vortex pair and a flat-plate boundary layer. The results of their predictions were compared with Mehta and Bradshaw's measurements. Part of the results involving those of the nonlinear stress-transport model and anisotropic k- epsilon model are presented and discussed. (Edited author abstract) 13 Refs.展开更多
The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG κ-ε turbulent model. The numerical simulation results are consistent with results observed ...The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG κ-ε turbulent model. The numerical simulation results are consistent with results observed by experimental means. A comparative study indicates that the corresponding errors of forces between calculated values and values observed in the experiment vary in the range of2.3%-11.2% and that the corresponding errors of velocities vary in the range of 1.3%-15.8%. The flow field numerical results show that upstream and vortices exist when the current passes over and through the surface of the reef model. This study suggests that the numerical simulation method can be applied to predict the forces and flow field associated with artificial reefs.展开更多
In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidat...In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidated. A coupling model, which evaluates heat, mass, momentum and radiative fluxes in the SPAC system, is developed for simulating microclimate over plant and bare soil. Especially, it is focussed on the details of turbulence transfer. For illustration, numerical simulation of the water-heat exchange processes at Shapotou Observatory, GAS, Ninxia Province are conducted, and the computational results show that the laws of land-surface processes are rather typical in the arid areas.展开更多
The proposedwork focuses on the in-depth study of convective heat transfer in the unconfined air gap of a discoidal rotor-stator system.The rotary cooling mechanism is achieved by the injection of two air jets,while t...The proposedwork focuses on the in-depth study of convective heat transfer in the unconfined air gap of a discoidal rotor-stator system.The rotary cooling mechanism is achieved by the injection of two air jets,while the cavity geometry is characterized by a dimensionless parameter G.The numerical analysis primarily concentrated on the effect of flow velocity and rotation on the heat exchange process.More precisely,the range of analysis extends from the rotational Reynolds number Re_(ω)=2.35×10^(5)to Re_(ω)=5.04×10^(5),while varying the Reynolds value of the jet in a range from 16×10^(3)to 55.46×10^(3).To carry out this analysis,a numerical simulation was conducted with Ansys-Fluent software,using the RSM turbulence model.The results of the study significantly reveal the impact of rotation on heat exchange transfer within the cavity,identifying two distinct zones of fluid recirculation.These zones exhibit remarkable heat transfer characteristics,contributing to a better understanding of the complexmechanisms governing heat transfer in this particular technological context.Additionally,the analysis of radial mean velocity distributions,as well as local and mean Nusselt numbers,provides further insight into the heat transfer performance of this unique configuration.展开更多
With the two-scale expansion technique proposed by Yoshizawa,the turbulent fluctuating field is expanded around the isotropic field.At a low-order two-scale expansion,applying the mode coupling approximation in the Ya...With the two-scale expansion technique proposed by Yoshizawa,the turbulent fluctuating field is expanded around the isotropic field.At a low-order two-scale expansion,applying the mode coupling approximation in the Yakhot-Orszag renormalization group method to analyze the fluctuating field,the Reynolds-average terms in the Reynolds stress transport equation,such as the convective term,the pressure-gradient-velocity correlation term and the dissipation term,are modeled.Two numerical examples:turbulent flow past a backward-facing step and the fully developed flow in a rotating channel,are presented for testing the efficiency of the proposed second-order model.For these two numerical examples,the proposed model performs as well as the Gibson-Launder (GL) model,giving better prediction than the standard k-ε model,especially in the abilities to calculate the secondary flow in the backward-facing step flow and to capture the asymmetric turbulent structure caused by frame rotation.展开更多
文摘In order to make the numerical calculation of viscous flows more convenient for the flows in channel with complicated profile governing equations expressed in the arbitrary curvilinear coordinates were derived by means of Favre density-weighted averaged method, and a turbulent model with effect of curvature modification was also derived. The numerical calculation of laminar and turbulent flown in divergent curved channels was carried out by means of parabolizeil computation method. The calculating results were used to analyze and investigate the aerodynamic performance of talor cascades in compressors preliminarily.
基金The research is supported by China Postdoctoral Science Foundation (No. 20080430129 ) and National Key Technology R&D Program ( No. 2007 BAE07 B07 ).
文摘A two-equation K-ε turbulent fluid flow model is built to model the heat transfer and fluid flow in gas tungsten arc welding (GTAW) process of stainless steel S US310 and S US316. This model combines the buoyancy force, lorentz force and marangni force as the driving forces of thefluidflow in the weld pool. The material properties are functions of temperature in this model. The simulated results show that the molten metal flowing outward is mainly caused by the marangoni convection, which makes the weld pool become wider and shallower. The comparison of the weld pool shape of SUS310 and SUS316 shows that the slight differences of the value of thermal conductivity mainly attributes to the difference of the weld pool shape and the distinction of heat transport in laminar and turbulent model makes large diversity in the simulated results.
文摘New energy vehicles have better clean and environmental protection characteristics than traditional fuel vehicles.The new energy engine cooling technology is critical in the design of new energy vehicles.This paper used oneand three-way joint simulation methods to simulate the refrigeration system of new energy vehicles.Firstly,a k-εturbulent flow model for the cooling pump flow field is established based on the principle of computational fluid dynamics.Then,the CFD commercial fluid analysis software FLUENT is used to simulate the flow field of the cooling pump under different inlet flow conditions.This paper proposes an optimization scheme for new energy vehicle engines’“boiling”phenomenon under high temperatures and long-time climbing conditions.The simulation results show that changing the radiator’s structure and adjusting the thermostat’s parameters can solve the problem of a“boiling pot.”The optimized new energy vehicle engine can maintain a better operating temperature range.The algorithm model can reference each cryogenic system component hardware selection and control strategy in the new energy vehicle’s engine.
基金supported by the Laoshan Laboratory(No.LSKJ202201600)the National Key Research and Development Program of China(No.2022YFC2808304).
文摘Surface waves have a considerable effect on vertical mixing in the upper ocean.In the past two decades,the vertical mixing induced through nonbreaking surface waves has been used in ocean and climate models to improve the simulation of the upper ocean.Thus far,several nonbreaking wave-induced mixing parameterization schemes have been proposed;however,no quantitative comparison has been performed among them.In this paper,a one-dimensional ocean model was used to compare the performances of five schemes,including those of Qiao et al.(Q),Hu and Wang(HW),Huang and Qiao(HQ),Pleskachevsky et al.(P),and Ghantous and Babanin(GB).Similar to previous studies,all of these schemes can decrease the simulated sea surface temperature(SST),increase the subsurface temperature,and deepen the mixed layer,thereby alleviating the common thermal deviation problem of the ocean model for upper ocean simulation.Among these schemes,the HQ scheme exhibited the weakest wave-induced mixing effect,and the HW scheme exhibited the strongest effect;the other three schemes exhibited roughly the same effect.In particular,the Q and P schemes exhibited nearly the same effect.In the simulation based on observations from the Ocean Weather Station Papa,the HQ scheme exhibited the best performance,followed by the Q scheme.In the experiment with the HQ scheme,the root-mean-square deviation of the simulated SST from the observations was 0.43℃,and the mixed layer depth(MLD)was 2.0 m.As a contrast,the deviations of the SST and MLD reached 1.25℃ and 8.4 m,respectively,in the experiment without wave-induced mixing.
基金supported by the Air Force Office of Scientific Research(Grant No.FA9550-23-1-0272)the National Natural Science Foundation of China(Grant Nos.11988102 and 91752202).
文摘Machine-learned augmentations to turbulence models can be advantageous for flows within the training dataset but can often cause harm outside.This lack of generalizability arises because the constants(as well as the functions)in a Reynolds-averaged Navier–Stokes(RANS)model are coupled,and un-constrained re-calibration of these constants(and functions)can disrupt the calibrations of the baseline model,the preservation of which is critical to the model's generalizability.To safeguard the behaviors of the baseline model beyond the training dataset,machine learning must be constrained such that basic calibrations like the law of the wall are kept intact.This letter aims to identify such constraints in two-equation RANS models so that future machine learning work can be performed without violating these constraints.We demonstrate that the identified constraints are not limiting.Furthermore,they help preserve the generalizability of the baseline model.
基金supported by the NASA Constellation University Institutes Program(CUIP),Claudia Meyer projeGt manager
文摘Cavitation is often triggered when the fluid pres- sure is lower than the vapor pressure at a local thermo- dynamic state. The present article reviews recent progress made toward developing modeling and computational strat- egies for cavitation predictions under both isothermal and cryogenic conditions, with an emphasis on the attached cav- ity. The review considers alternative cavitation models along Reynolds-averaged Navier-Stokes and very lager eddy simu- lation turbulence approaches to ensure that the computational tools can handle flows of engineering interests. Observing the substantial uncertainties associated with both modeling and experimental information, surrogate modeling strategies are reviewed to assess the implications and relative impor- tance of the various modeling and materials parameters. The exchange between static and dynamic pressures under the influence of the viscous effects can have a noticeable impact on the effective shape of a solid object, which can impact the cavitation structure. The thermal effect with respect to evaporation and condensation dynamics is examined to shed light on the fluid physics associated with cryogenic cav- itation. The surrogate modeling techniques are highlighted in the context of modeling sensitivity assessment. Keywords
基金supported by the National Natural Science Foundation of China (10802026)
文摘Cavitation typically occurs when the fluid pressure is lower than the vapor pressure at a local thermodynamic state, and the flow is frequently unsteady and turbulent. To assess the state-of-the-art of computational capabilities for unsteady cavitating flows, different cavitation and turbulence model combinations are conducted. The selected cavitation models include several widely-used models including one based on phenomenological argument and the other utilizing interface dynamics. The k-e turbulence model with additional implementation of the filter function and density correction function are considered to reduce the eddy viscosity according to the computed turbulence length scale and local fluid density respectively. We have also blended these alternative cavitation and lustrate that the eddy viscosity turbulence treatments, to ilnear the closure region can significantly influence the capture of detached cavity. From the experimental validations regarding the force analysis, frequency, and the cavity visualization, no single model combination performs best in all aspects. Furthermore, the implications of parameters contained in different cavitation models are investigated. The phase change process is more pronounced around the detached cavity, which is better illustrated by the interfacial dynamics model. Our study provides insight to aid further modeling development.
基金National Natural Science F oundation of China !( No.91880 10 )National Defense Science Foundation!( 95 J13 A .1.2 )
文摘Additional equations were found based on experiments for an algebraic turbulence model to improve the prediction of the behavior of three dimensional turbulent boundary layers by taking account of the effects of pressure gradient and the historical variation of eddy viscosity, so the model is with memory. Numerical calculation by solving boundary layer equations was carried out for the five pressure driven three dimensional turbulent boundary layers developed on flat plates, swept wing, and prolate spheroid in symmetrical plane. Comparing the computational results with the experimental data, it is obvious that the prediction will be more accurate if the proposed closure equations are used, especially for the turbulent shear stresses.
基金supported by the National Natural Science Foundation of China(10832007)Shanghai Leading Academic Discipline Project(B206)
文摘Quadratic and cubic non-linear eddy-viscosity turbulence models(NLEVM) with low Reynolds number(Re) correction were presented to provide better description of anisotropic turbulence stresses in the numerical prediction of supercavitating flows,which are accompanied with large density ratio and large-scaled swirling flow structures.The applications of the NLEVM were carried out through a self-developed cavitation codes,coupled with a cavitation model based on the transport equation of liquid phase.These NLEVM were verified capable of capturing more accurate macroscopic shape and hydrodynamic property of supercavity by the benchmark problems of supercavities over simple objects.Finally,the cubic NLEVM was further applied to the numerical prediction of supercavitating flow around a complex submerged vehicle.The corresponding cavitation behaviors were explored in detail to provide beneficial experience for further research.
基金supported by the National Natural Science Foundation of China(22078009)National Key Research and Development Program of China(2021YFC3001102,2021YFC3001100)。
文摘In this paper,an improved computational fluid dynamic(CFD)model for gas-liquid flow in bubble column was developed using the one-equation Wary-Agarwal(WA)turbulence model coupled with the population balance model(PBM).Through 18 orthogonal test cases,the optimal combination of interfacial force models,including drag force,lift force,turbulent dispersion force.The modified wall lubrication force model was proposed to improve the predictive ability for hydrodynamic behavior near the wall of the bubble column.The values simulated by optimized CFD model were in agreement with experimental data,and the errors were within±20%.In addition,the axial velocity,turbulent kinetic energy,bubble size distribution,and the dynamic characteristic of bubble plume were analyzed at different superficial gas velocities.This research work could provide a theoretical basis for the extension of the CFD-PBM coupled model to other multiphase reactors..
文摘The counter-gradient terms in the computations of turbulent fluxes of heat and moisture have been included in the PBL parameterization of a regional model for monsoon prediction. Results show that inclusion of counter-gradient terms has a marginal impact in the prediction of large scale monsoon circulation and rainfall rates.
文摘By introducing the extremum law of energy dissipation rate into the investigation of turbulent flow,the closure problem for the basic equations is briefly discussed in connection with a newly suggested semi-empirical turbulent flow model.As a result,several unknown functions which cannot be solved by the existed semi-empirical models are obtained in the present paper.It is shown that the turbulent flow models,as the constraints to the extremum problem, have direct influence on the final results of the primary parameters.
文摘The paper presents the k-ε model equations of turbulence with a single set of constants chosen by the authors, which is appropriate to simulate a wide range of turbulent flows. The model validation has been performed for a number of flows and its main results are given in the paper. The turbulent mixing of flow with shear in the tangential velocity component is discussed in details. An analytical solution to the system of ordinary differential equations of the k-ε model of turbulent mixing has been found for the self-similar regime of flow. The model coefficients were chosen using simulation results for some simplest turbulent flows. The solution can be used for the verification of codes. The numerical simulation of the problem has been performed by the 2D code EGAK using this model. A good agreement of the numerical simulation results with the self-similar solution, 3D DNS results and known experimental data has been achieved. This allows stating that the k-ε model constants chosen by the authors are acceptable for the considered flow.
基金the National Numerical Wind Tunnel(No.NNW2019ZT1-A03)the National Natural Science Foundation of China(Nos.91952201,11372008,and 11452002)。
文摘Despite being one of the oldest and most widely-used turbulence models in engineering computational fluid dynamics(CFD),the k-ωmodel has not been fully understood theoretically because of its high nonlinearity and complex model parameter setting.Here,a multi-layer analytic expression is postulated for two lengths(stress and kinetic energy lengths),yielding an analytic solution for the k-ωmodel equations in pipe flow.Approximate local balance equations are analyzed to determine the key parameters in the solution,which are shown to be rather close to the empirically-measured values from the numerical solution of the Wilcox k-ωmodel,and hence the analytic construction is fully validated.The results provide clear evidence that the k-ωmodel sets in it a multilayer structure,which is similar to but different,in some insignificant details,from the Navier-Stokes(N-S)turbulence.This finding explains why the k-ωmodel is so popular,especially in computing the near-wall flow.Finally,the analysis is extended to a newlyrefined k-ωmodel called the structural ensemble dynamics(SED)k-ωmodel,showing that the SED k-ωmodel has improved the multi-layer structure in the outer flow but preserved the setting of the k-ωmodel in the inner region.
文摘The regions with shear stress and mean velocity gradient of opposite sign often exist in complex turbulent shear flows.In these cases,the eddy viscosity hypothesis breaks down.Hinze regards the,departure from eddy viscosity hypothesis as a result from transportation of mean momentum over distance by the large structures and arrives at a shear stress expression including the second order derivatives of the mean velocity.However,his expression greatly overestimates the shear stress.This implies that the flow particles are unlikely to have enough memory of the mean momentum over distance.By assuming the departure from eddy viscosity hypothesis as a result from transportation of the shear stress contained in smaller eddies over distance by the large structures,the present author has arrived at a new shear stress expression.The shear stress estimated so far is in good agreement with the experiments.
基金The project supported by the National Natural Science Foundation of China under Contract No.19132012
文摘Four turbulence models, namely, the basic and nonlinear stress-transport models and the basic and anisotropic k- epsilon models, have been tested in the case of interaction between a longitudinal vortex pair and a flat-plate boundary layer. The results of their predictions were compared with Mehta and Bradshaw's measurements. Part of the results involving those of the nonlinear stress-transport model and anisotropic k- epsilon model are presented and discussed. (Edited author abstract) 13 Refs.
基金Supported by the National High Technology Research and Development Program of China(863 Programs)(No.2006AA100301)Science and Technology Development Program of Shandong Province(No.2005GG3205102)
文摘The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG κ-ε turbulent model. The numerical simulation results are consistent with results observed by experimental means. A comparative study indicates that the corresponding errors of forces between calculated values and values observed in the experiment vary in the range of2.3%-11.2% and that the corresponding errors of velocities vary in the range of 1.3%-15.8%. The flow field numerical results show that upstream and vortices exist when the current passes over and through the surface of the reef model. This study suggests that the numerical simulation method can be applied to predict the forces and flow field associated with artificial reefs.
文摘In this paper, the importance of investigation on terrestrical processes in arid areas for mankind's living environment protection and local economy development as well as its present state of the art are elucidated. A coupling model, which evaluates heat, mass, momentum and radiative fluxes in the SPAC system, is developed for simulating microclimate over plant and bare soil. Especially, it is focussed on the details of turbulence transfer. For illustration, numerical simulation of the water-heat exchange processes at Shapotou Observatory, GAS, Ninxia Province are conducted, and the computational results show that the laws of land-surface processes are rather typical in the arid areas.
文摘The proposedwork focuses on the in-depth study of convective heat transfer in the unconfined air gap of a discoidal rotor-stator system.The rotary cooling mechanism is achieved by the injection of two air jets,while the cavity geometry is characterized by a dimensionless parameter G.The numerical analysis primarily concentrated on the effect of flow velocity and rotation on the heat exchange process.More precisely,the range of analysis extends from the rotational Reynolds number Re_(ω)=2.35×10^(5)to Re_(ω)=5.04×10^(5),while varying the Reynolds value of the jet in a range from 16×10^(3)to 55.46×10^(3).To carry out this analysis,a numerical simulation was conducted with Ansys-Fluent software,using the RSM turbulence model.The results of the study significantly reveal the impact of rotation on heat exchange transfer within the cavity,identifying two distinct zones of fluid recirculation.These zones exhibit remarkable heat transfer characteristics,contributing to a better understanding of the complexmechanisms governing heat transfer in this particular technological context.Additionally,the analysis of radial mean velocity distributions,as well as local and mean Nusselt numbers,provides further insight into the heat transfer performance of this unique configuration.
基金supported by the National Natural Science Foundation of China (10872192)
文摘With the two-scale expansion technique proposed by Yoshizawa,the turbulent fluctuating field is expanded around the isotropic field.At a low-order two-scale expansion,applying the mode coupling approximation in the Yakhot-Orszag renormalization group method to analyze the fluctuating field,the Reynolds-average terms in the Reynolds stress transport equation,such as the convective term,the pressure-gradient-velocity correlation term and the dissipation term,are modeled.Two numerical examples:turbulent flow past a backward-facing step and the fully developed flow in a rotating channel,are presented for testing the efficiency of the proposed second-order model.For these two numerical examples,the proposed model performs as well as the Gibson-Launder (GL) model,giving better prediction than the standard k-ε model,especially in the abilities to calculate the secondary flow in the backward-facing step flow and to capture the asymmetric turbulent structure caused by frame rotation.