期刊文献+
共找到89,303篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical Solutions of the Classical and Modified Buckley-Leverett Equations Applied to Two-Phase Fluid Flow
1
作者 Raphael de O. Garcia Graciele P. Silveira 《Open Journal of Fluid Dynamics》 2024年第3期184-204,共21页
Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on t... Climate change is a reality. The burning of fossil fuels from oil, natural gas and coal is responsible for much of the pollution and the increase in the planet’s average temperature, which has raised discussions on the subject, given the emergencies related to climate. An energy transition to clean and renewable sources is necessary and urgent, but it will not be quick. In this sense, increasing the efficiency of oil extraction from existing sources is crucial, to avoid waste and the drilling of new wells. The purpose of this work was to add diffusive and dispersive terms to the Buckley-Leverett equation in order to incorporate extra phenomena in the temporal evolution between the water-oil and oil-water transitions in the pipeline. For this, the modified Buckley-Leverett equation was discretized via essentially weighted non-oscillatory schemes, coupled with a three-stage Runge-Kutta and a fourth-order centered finite difference methods. Then, computational simulations were performed and the results showed that new features emerge in the transitions, when compared to classical simulations. For instance, the dispersive term inhibits the diffusive term, adding oscillations, which indicates that the absorption of the fluid by the porous medium occurs in a non-homogeneous manner. Therefore, based on research such as this, decisions can be made regarding the replacement of the porous medium or the insertion of new components to delay the replacement. 展开更多
关键词 Computational fluid Dynamics Buckley-Leverett Equation Numerical Methods two-phase fluid Flow
下载PDF
Melting Flow Analyzation of Radiative Riga Plate Two-Phase Nano-Fluid Across Non-Flatness Plane with Chemical Reaction
2
作者 Jupudi Lakshmi Rama Prasad F.Mebarek-Oudina +2 位作者 G.Dharmaiah Putta Babu Rao H.Vaidya 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1515-1532,共18页
There is a strong relationship between analytical and numerical heat transfers due to thermodynamically anticipated findings,making thermo-dynamical modeling an effective tool for estimating the ideal melting point of... There is a strong relationship between analytical and numerical heat transfers due to thermodynamically anticipated findings,making thermo-dynamical modeling an effective tool for estimating the ideal melting point of heat transfer.Under certain assumptions,the present study builds a mathematical model of melting heat transport nanofluid flow of chemical reactions and joule heating.Nanofluid flow is described by higher-order partial non-linear differential equations.Incorporating suitable similarity transformations and dimensionless parameters converts these controlling partial differential equations into the non-linear ordinary differential equations and resulting system of nonlinear equations is established.Plotted graphic visualizations in MATLAB allow for an indepth analysis of the effects of distinguishing factors on fluid flow.Innovative applications of the findings include electronic cooling,heat transfer,reaction processes,nuclear reactors,micro heat pipes,and other related fields.If the exponential index increases,however,the thermal profile becomes worse.By comparing the current findings to those already published in the literature for this particular example,we find that they are highly congruent,therefore validating the present work.Every one of the numerical findings exhibits asymptotic behavior by meeting the specified boundary conditions. 展开更多
关键词 Non-flat sheet melting surface chemical reaction 2-phase nano fluid
下载PDF
Simulation and Analysis on the Two-Phase Flow Fields in a Rotating-Stream-Tray Absorber by Using Computational Fluid Dynamics 被引量:8
3
作者 邵雄飞 吴忠标 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期169-173,共5页
The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model... The flow field of gas and liquid in a φ150mm rotating-stream-tray (RST) scrubber is simulated by using computational fluid dynamic (CFD) method. The sismulation is based on the two-equation RNG κ-ε turbulence model, Eulerian multiphase model, and a real-shape 3D model with a huge number of meshes. The simulation results include detailed information about velocity, pressure, volume fraction and so on. Some features of the flow field are obtained: liquid is atomized in a thin annular zone; a high velocity air zone prevents water drops at the bottom from flying towards the wall; the pressure varies sharply at the end of blades and so on. The results will be helpful for structure optimization and engineering design. 展开更多
关键词 rotating-stream-tray two-phase flow field SIMULATION computational fluid dynamics
下载PDF
Three-dimensional Computational Fluid Dynamics Modeling of Two-phase Flow in a Structured Packing Column 被引量:4
4
作者 张小斌 姚蕾 +1 位作者 邱利民 张学军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第9期959-966,共8页
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed... Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations. 展开更多
关键词 structured packing column two-phase flow computational fluid dynamics THREE-DIMENSION
下载PDF
Characteristics of high-sulfate wastewater treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized bed 被引量:24
5
作者 WEI Chao-hai, WANG Wen-xiang, DENG Zhi-yi, WU Chao-fei School of Environmental Science and Engineering, South China University of Technology, Guangzhou 510640, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第3期264-270,共7页
A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and... A new anaerobic reactor, Jet-loop anaerobic fluidized bed (JLAFB), was designed for treating high-sulfate wastewater. The treatment characteristics, including the effect of influent COD/SO42 ratio and alkalinity and sulfide inhibition in reactors, were discussed for a JLAFB and a general anaerobic fiuidized bed (AFB) reactor used as sulfate-reducing phase and methane-producing phase, respectively, in two-phase anaerobic digestion process. The formation of granules in the two reactors was also examined. The results indicated that COD and sulfate removal had different demand of influent COD/SO4^2- ratios. When total COD removal was up to 85%, the ratio was only required up to 1.2, whereas, total sulfate removal up to 95% required it exceeding 3.0. The alkalinity in the two reactors increased linearly with the growth of influent alkalinity. Moreover, the change of influent alkalinity had no significant effect on pH and volatile fatty acids (VFA) in the two reactors. Influent alkalinity kept at 400-500 mg/L could meet the requirement of the treating process. The JLAFB reactor had great advantage in avoiding sulfide and free-H2S accumulation and toxicity inhibition on microorganisms. When sulfate loading rate was up to 8. 1 kg/(m^3.d), the sulfide and free-H2S concentrations in JLAFB reactor were 58.6 and 49.7 mg/L, respectively. Furthermore, the granules, with offwhite color, ellipse shape and diameters of 1.0-3.0 mm, could be developed in JLAFB reactor. In granules, different groups of bacteria were distributed in different layers, and some inorganic metal compounds such as Fe, Ca, Mg etc. were found. 展开更多
关键词 Jet-loop anaerobic fluidized bed reactor sulfate wastewater two-phase anaerobic digestion process granule sludge
下载PDF
Fluid−Structure Interaction of Two-Phase Flow Passing Through 90° Pipe Bend Under Slug Pattern Conditions 被引量:2
6
作者 WANG Zhi-wei HE Yan-ping +4 位作者 LI Ming-zhi QIU Ming HUANG Chao LIU Ya-dong WANG Zi 《China Ocean Engineering》 SCIE EI CSCD 2021年第6期914-923,共10页
Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patte... Numerical simulations of evolution characteristics of slug flow across a 90°pipe bend have been carried out to study the fluid−structure interaction response induced by internal slug flow.The two-phase flow patterns and turbulence were modelled by using the volume of fluid(VOF)model and the Realizable k−εturbulence model respectively.Firstly,validation of the CFD model was carried out and the desirable results were obtained.The different flow patterns and the time-average mean void fraction was coincident with the reported experimental data.Simulations of different cases of slug flow have been carried out to show the effects of superficial gas and liquid velocity on the evolution characteristics of slug flow.Then,a one-way coupled fluid-structure interaction framework was established to investigate the slug flow interaction with a 90°pipe bend under various superficial liquid and gas velocities.It was found that the maximum total deformation and equivalent stress increased with the increasing superficial gas velocity,while decreased with the increasing superficial liquid velocity.In addition,the total deformation and equivalent stress has obvious periodic fluctuation.Furthermore,the distribution position of maximum deformation and stress was related to the evolution of slug flow.With the increasing superficial gas velocity,the maximum total deformation was mainly located at the 90°pipe bend.But as the superficial liquid velocity increases,the maximum total deformation was mainly located in the horizontal pipe section.Consequently,the slug flow with higher superficial gas velocity will induce more serious cyclical impact on the 90°pipe bend. 展开更多
关键词 two-phase flow 90°pipe bend slug flow fluid−structure interaction dynamic response characteristics
下载PDF
A two-phase type-curve method with multiscale fluid transport mechanisms in hydraulically fractured shale reservoirs 被引量:1
7
作者 Feng-Yuan Zhang Lin-Jun Zou +3 位作者 Zhen-Hua Rui Hamid Emami-Meybodi Luis F.Ayala Zheng-Xin Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2253-2267,共15页
The quantitative understanding of hydraulic fracture(HF)properties guides accurate production forecasts and reserve estimation.Type curve is a powerful technique to characterize HF and reservoir properties from flowba... The quantitative understanding of hydraulic fracture(HF)properties guides accurate production forecasts and reserve estimation.Type curve is a powerful technique to characterize HF and reservoir properties from flowback and long-term production data.However,two-phase flow of water and hydrocarbon after an HF stimulation together with the complex transport mechanisms in shale nanopores exacerbate the nonlinearity of the transport equation,causing errors in type-curve analysis.Accordingly,we propose a new two-phase type-curve method to estimate HF properties,such as HF volume and permeability of fracture,through the analysis of flowback data of multi-fractured shale wells.The proposed type curve is based on a semianalytical solution that couples the two-phase flow from the matrix with the flow in HF by incorporating matrix influx,slippage effect,stress dependence,and the spatial variation of fluid properties in inorganic and organic pores.For the first time,multiple fluid transport mechanisms are considered into two-phase type-curve analysis for shale reservoirs.We analyze the flowback data from a multi-fractured horizontal well in a shale gas reservoir to verify the field application of the proposed method.The results show that the fracture properties calculated by the type-curve method are in good agreement with the long-time production data. 展开更多
关键词 Type curve two-phase flow Flowback analysis fluid transport mechanisms Shale reservoir
下载PDF
Mathematical model of micropolar fluid in two-phase immiscible fluid flow through porous channel 被引量:1
8
作者 P.K.YADAV S.JAISWAL B.D.SHARMA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第7期993-1006,共14页
This paper is concerned with the flow of two immiscible fluids through a porous horizontal channel. The fluid in the upper region is the micropolar fluid/the Eringen fluid, and the fluid in the lower region is the New... This paper is concerned with the flow of two immiscible fluids through a porous horizontal channel. The fluid in the upper region is the micropolar fluid/the Eringen fluid, and the fluid in the lower region is the Newtonian viscous fluid. The flow is driven by a constant pressure gradient. The presence of micropolar fluids introduces additional rotational parameters. Also, the porous material considered in both regions has two different permeabilities. A direct method is used to obtain the analytical solu- tion of the concerned problem. In the present problem, the effects of the couple stress, the micropolarity parameter, the viscosity ratio, and the permeability on the velocity profile and the microrotational velocity are discussed. It is found that all the physical parameters play an important role in controlling the translational velocity profile and the microrotational velocity. In addition, numerical values of the different flow parameters are computed. The effects of the different flow parameters on the flow rate and the wall shear stress are also discussed graphically. 展开更多
关键词 micropolar fluid immiscible fluid porous medium couple stress microp=olarity parameter
下载PDF
MATHEMATICAL MODEL OF TWO-PHASE FLUID NONLINEAR FLOW IN LOW-PERMEABILITY POROUS MEDIA WITH APPLICATIONS
9
作者 邓英尔 刘慈群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2003年第10期1184-1193,共10页
A mathematical model of two-phase fluid nonlinear flow in the direction of normal of ellipse through low-permeability porous media was established according to a nonlinear flow law expressed in a continuous function w... A mathematical model of two-phase fluid nonlinear flow in the direction of normal of ellipse through low-permeability porous media was established according to a nonlinear flow law expressed in a continuous function with three parameters, a mass conservation law and a concept of turbulent ellipses. A solution to the model was obtained by using a finite difference method and an extrapolation method. Formulas of calculating development index not only before but also after water breaks through an oil well in the condition of two-phase fluid nonlinear flow in the media were derived. An example was discussed. Water saturation distribution was presented. The moving law of drainage front was found. Laws of change of pressure difference with time were recognized. Results show that there is much difference of water saturation distribution between nonlinear flow and linear flow; that drainage front by water moves faster, water breaks through sooner and the index gets worse because of the nonlinear flow; and that dimensionless pressure difference gets larger at the same dimensionless time and difficulty of oil development becomes bigger by the nonlinear flow. Thus, it is necessary that influence of nonlinear flow on development indexes of the oil fields be taken into account. The results provide water-flooding development of the oilfields with scientific basis. 展开更多
关键词 low permeability porous media two-phase fluid nonlinear flow finite difference method extrapolation method
下载PDF
Comparative numerical study of single and two-phase models of nanofluid heat transfer in wavy channel 被引量:3
10
作者 M.M.RASHIDI A.HOSSEINI +2 位作者 I.POP S.KUMAR N.FREIDOONIMEHR 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第7期831-848,共18页
The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) p... The main purpose of this study is to survey numerically comparison of two- phase and single phase of heat transfer and flow field of copper-water nanofluid in a wavy channel. The computational fluid dynamics (CFD) prediction is used for heat transfer and flow prediction of the single phase and three different two-phase models (mixture, volume of fluid (VOF), and Eulerian). The heat transfer coefficient, temperature, and velocity distributions are investigated. The results show that the differences between the temperature fie].d in the single phase and two-phase models are greater than those in the hydrodynamic tleld. Also, it is found that the heat transfer coefficient predicted by the single phase model is enhanced by increasing the volume fraction of nanoparticles for all Reynolds numbers; while for the two-phase models, when the Reynolds number is low, increasing the volume fraction of nanoparticles will enhance the heat transfer coefficient in the front and the middle of the wavy channel, but gradually decrease along the wavy channel. 展开更多
关键词 NANOfluid two-phase model wavy channel semi implicit method for pres-sure linked equation (SIMPLE) method
下载PDF
Pressure Drop of Liquid–Solid Two-Phase Flow in the Vertical Tube Bundle of a Cold-Model Circulating Fluidized Bed Evaporator 被引量:2
11
作者 Feng Jiang Siyao Lv +2 位作者 Guopeng Qi Xiaoling Chen Xiulun Li 《Transactions of Tianjin University》 EI CAS 2019年第6期618-630,共13页
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr... A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry. 展开更多
关键词 Pressure drop Liquid-solid two-phase flow CIRCULATING fluidized bed EVAPORATOR VERTICAL tube BUNDLE Heat transfer enhancement FOULING prevention DESCALING
下载PDF
SECOND-ORDER MOMENT MODEL FOR DENSE TWO-PHASE TURBULENT FLOW OF BINGHAM FLUID WITH PARTICLES
12
作者 曾卓雄 周力行 刘志和 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第10期1373-1381,共9页
The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collisi... The USM-θ model of Bingham fluid for dense two-phase turbulent flow was developed, which combines the second-order moment model for two-phase turbulence with the particle kinetic theory for the inter-particle collision. In this model, phases interaction and the extra term of Bingham fluid yield stress are taken into account. An algorithm for USM-θ model in dense two-phase flow was proposed, in which the influence of particle volume fraction is accounted for. This model was used to simulate turbulent flow of Bingham fluid single-phase and dense liquid-particle two-phase in pipe. It is shown USM-θ model has better prediction result than the five-equation model, in which the particle-particle collision is modeled by the particle kinetic theory, while the turbulence of both phase is simulated by the two-equation turbulence model. The USM-θ model was then used to simulate the dense two-phase turbulent up flow of Bingham fluid with particles. With the increasing of the yield stress, the velocities of Bingham and particle decrease near the pipe centre. Comparing the two-phase flow of Bingham-particle with that of liquid-particle, it is found the source term of yield stress has significant effect on flow. 展开更多
关键词 Bingham fluid two-phase flow yield stress second-order moment model
下载PDF
An experimental study of drag reduction by nanofluids in slug two-phase flow of air and water through horizontal pipes 被引量:1
13
作者 A.R.Pouranfard D.Mowla F.Esmaeilzadeh 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第3期471-475,共5页
This study investigates the effect of injecting nanofluids containing nano-SiO_2 as drag reducing agents(DRA) at different concentrations on the pressure drop of air-water flow through horizontal pipe.The test fluid u... This study investigates the effect of injecting nanofluids containing nano-SiO_2 as drag reducing agents(DRA) at different concentrations on the pressure drop of air-water flow through horizontal pipe.The test fluid used in this study was air-water with nano-SiO_2 particles at 0.1%-1%mass concentration.The test sections of the experimental set-up were five pipes of the same length of 9 m with ID from 0.0127m-0.03175m(0.5 to 1.25 in).Airwater flow was run in slug flow regime under different volumetric flow rates.The results of drag reduction(η%)indicated that the addition of DRA could be efficient up to some dosage.Drag reduction performed much better for smaller pipe diameters than it did for larger ones.For various nanosilica concentrations,the maximum drag reduction was about 66.8%for 0.75%mass concentration of nanosilica. 展开更多
关键词 Nanofluid Drag reduction Turbulent two-phase flow Horizontal pipeline
下载PDF
Effect of a two-phase wedge-sliding model on the ingredient drift of a stable mixed fluid and its computing method
14
作者 韩志宏 刘佐民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期314-322,共9页
A two-phase wedge-sliding model is developed based on the micro-cellular structure and minimum entropy theory of a stable system, and it is used to describe the ingredient distribution of a mixed fluid in a non-unifor... A two-phase wedge-sliding model is developed based on the micro-cellular structure and minimum entropy theory of a stable system, and it is used to describe the ingredient distribution of a mixed fluid in a non-uniform stress field and to analyse its phase drift phenomenon. In the model, the drift-inhibition angle and the expansion-inhibition angle are also deduced and used as evaluating indexes to describe the drifting trend of different ingredients among the mixed fluids. For solving above two indexes of the model, a new calculation method is developed and used to compute the phase distributions of multiphase fluid at peak stress and gradient area stress, respectively. As an example, the flow process of grease in a pipe is analysed by simulation method and used to verify the validity of the model. 展开更多
关键词 mixed fluid ingredient drift wedge-sliding model computing method
下载PDF
Linearization and analytic solution of fluid dynamics of cell two-phase flow
15
作者 范天佑 范蕾 唐志毅 《Journal of Beijing Institute of Technology》 EI CAS 2011年第1期1-3,共3页
Linearized equations of fluid dynamics of cell two phase flow for one dimensional case are proposed. Based on the equations, an analytic solution is derived, in which the frequency of wave is observed. The frequency f... Linearized equations of fluid dynamics of cell two phase flow for one dimensional case are proposed. Based on the equations, an analytic solution is derived, in which the frequency of wave is observed. The frequency formula consists of all important parameters of the fluid dynamics. In our observation, the group velocity and phase velocity of the motion of wave propagation are explicitly exhibited as well. 展开更多
关键词 ell two phase flow fluid dynamics LINEARIZATION analytic solution
下载PDF
BUBBLE COLLAPSE IN SOLID-LIQUID TWO-PHASE FLUID
16
《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1991年第1期51-58,共8页
Equations of motion for bubble collapse in solid-liquid two-phase fluid have been derived, in which the resistance coupling effects between the liquid and solid particles have been considered. The motion of particles ... Equations of motion for bubble collapse in solid-liquid two-phase fluid have been derived, in which the resistance coupling effects between the liquid and solid particles have been considered. The motion of particles during the bubble collapse and the effects of particles on bubble collapse have been calculated and discussed. Qualitative relations between the concentration and the size of the particles and the rate of bubble collapse have been obtaind. 展开更多
关键词 bubble collapse bubble dynamics CAVITATION two-phase flow
下载PDF
Effect of copper nanoparticles on thermal behavior of two-phase argon-copper nanofluid flow in rough nanochannels with focusing on the interface properties and heat transfer using molecular dynamics simulation
17
作者 Shabnam Ghahremanian Abbas Abbassi +1 位作者 Zohreh Mansoori Davood Toghraie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期344-350,共7页
A comparison between the efficacy of surface boundary structure and presence of nanoparticles on the condensation two-phase flow inside rough nanochannels has been accomplished by applying molecular dynamics procedure... A comparison between the efficacy of surface boundary structure and presence of nanoparticles on the condensation two-phase flow inside rough nanochannels has been accomplished by applying molecular dynamics procedure to evaluate the thermal conductivity and flow characteristics.Simulation is performed in a computational region with two copper walls containing rectangular rough elements under different saturated temperatures.The main properties of liquid–vapor interface including density and the number of liquid atoms,are obtained.It is observed that the density profile is more affected by nanoparticles than the roughness.Also,compared to the condensation of nanofluid in a smooth nanochannel,the rough wall causes a greater drop in the temperature at the early time steps and by development of liquid films,effects of the wall roughness reduce.At the first of the condensation process,adding nanoparticle causes that transferring argon particles to the liquid phase increases with a steeper slope.Furthermore,heat current autocorrelation function(HCACF)for nanofluid condensation flow over considered correlation time is analyzed and following that the thermal conductivity for different saturated conditions is calculated.It has been represented that at lower temperatures the roughness makes more significant influence on the heat transfer of two-phase flow,while at higher temperatures the importance of nanoparticles prevails. 展开更多
关键词 two-phase flow NANOfluid Roughness element Thermal conductivity
下载PDF
Synthetic polymers:A review of applications in drilling fluids 被引量:2
18
作者 Shadfar Davoodi Mohammed Al-Shargabi +2 位作者 David A.Wood Valeriy S.Rukavishnikov Konstantin M.Minaev 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期475-518,共44页
With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complicatio... With the growth of deep drilling and the complexity of the well profile,the requirements for a more complete and efficient exploitation of productive formations increase,which increases the risk of various complications.Currently,reagents based on modified natural polymers(which are naturally occurring compounds)and synthetic polymers(SPs)which are polymeric compounds created industrially,are widely used to prevent emerging complications in the drilling process.However,compared to modified natural polymers,SPs form a family of high-molecular-weight compounds that are fully synthesized by undergoing chemical polymerization reactions.SPs provide substantial flexibility in their design.Moreover,their size and chemical composition can be adjusted to provide properties for nearly all the functional objectives of drilling fluids.They can be classified based on chemical ingredients,type of reaction,and their responses to heating.However,some of SPs,due to their structural characteristics,have a high cost,a poor temperature and salt resistance in drilling fluids,and degradation begins when the temperature reaches 130℃.These drawbacks prevent SP use in some medium and deep wells.Thus,this review addresses the historical development,the characteristics,manufacturing methods,classification,and the applications of SPs in drilling fluids.The contributions of SPs as additives to drilling fluids to enhance rheology,filtrate generation,carrying of cuttings,fluid lubricity,and clay/shale stability are explained in detail.The mechanisms,impacts,and advances achieved when SPs are added to drilling fluids are also described.The typical challenges encountered by SPs when deployed in drilling fluids and their advantages and drawbacks are also discussed.Economic issues also impact the applications of SPs in drilling fluids.Consequently,the cost of the most relevant SPs,and the monomers used in their synthesis,are assessed.Environmental impacts of SPs when deployed in drilling fluids,and their manufacturing processes are identified,together with advances in SP-treatment methods aimed at reducing those impacts.Recommendations for required future research addressing SP property and performance gaps are provided. 展开更多
关键词 Synthetic versus natural polymers Nanopolymers Drilling fluid additives LUBRICITY Clay swelling Hole cleaning
下载PDF
Effect of fracture fluid flowback on shale microfractures using CT scanning 被引量:2
19
作者 Jiale He Zhihong Zhao +6 位作者 Yiran Geng Yuping Chen Jianchun Guo Cong Lu Shouyi Wang Xueliang Han Jun Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期426-436,共11页
The field data of shale fracturing demonstrate that the flowback performance of fracturing fluid is different from that of conventional reservoirs,where the flowback rate of shale fracturing fluid is lower than that o... The field data of shale fracturing demonstrate that the flowback performance of fracturing fluid is different from that of conventional reservoirs,where the flowback rate of shale fracturing fluid is lower than that of conventional reservoirs.At the early stage of flowback,there is no single-phase flow of the liquid phase in shale,but rather a gas-water two-phase flow,such that the single-phase flow model for tight oil and gas reservoirs is not applicable.In this study,pores and microfractures are extracted based on the experimental results of computed tomography(CT)scanning,and a spatial model of microfractures is established.Then,the influence of rough microfracture surfaces on the flow is corrected using the modified cubic law,which was modified by introducing the average deviation of the microfracture height as a roughness factor to consider the influence of microfracture surface roughness.The flow in the fracture network is simulated using the modified cubic law and the lattice Boltzmann method(LBM).The results obtained demonstrate that most of the fracturing fluid is retained in the shale microfractures,which explains the low fracturing fluid flowback rate in shale hydraulic fracturing. 展开更多
关键词 SHALE Flowback of fracturing fluid MICROFRACTURE Lattice Boltzmann method(LBM)
下载PDF
Mechanism from particle compaction to fluidization of liquid–solid two-phase flow
20
作者 Yue Zhang Jinchun Song +2 位作者 Lianxi Ma Liancun Zheng Minghe Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期373-377,共5页
A new model of particle yield stress including cohesive strength is proposed,which considers the friction and cohesive strength between particles.A calculation method for the fluidization process of liquid–solid two-... A new model of particle yield stress including cohesive strength is proposed,which considers the friction and cohesive strength between particles.A calculation method for the fluidization process of liquid–solid two-phase flow in compact packing state is given,and the simulation and experimental studies of fluidization process are carried out by taking the sand–water two-phase flow in the jet dredging system as an example,and the calculation method is verified. 展开更多
关键词 liquid–solid flow two-phase flow cohesive strength yield stress
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部