A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled ...A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled quantum teleportation network involving more users is in demand,which satisfies different combinations of users for practical requirements.Here we propose a highly versatile and controlled teleportation network that can switch among various combinations of different users.We use a single continuous-variable six-partite Greenberger-Horne-Zeilinger(GHZ)state to realize such a task by choosing the different measurement and feedback operations.The controlled teleportation network,which includes one sub-network,two sub-networks and three sub-networks,can be realized for different application of user combinations.Furthermore,the coherent feedback control(CFC)can manipulate and improve the teleportation performance.Our approach is flexible and scalable,and would provide a versatile platform for demonstrations of complex quantum communication and quantum computing protocols.展开更多
Underwater quantum communication plays a crucial role in ensuring secure data transmission and extensible quantum networks in underwater environments.However,the implementation of such applications encounters challeng...Underwater quantum communication plays a crucial role in ensuring secure data transmission and extensible quantum networks in underwater environments.However,the implementation of such applications encounters challenges due to the light attenuation caused by the complicated natural seawater.This paper focuses on employing a model based on seawater chlorophyll-a concentration to characterize the absorption and scattering of light through quantum channels.We propose a multi-scattering random channel model,which demonstrates characteristics of the excess noise in different propagation directions of communication links.Furthermore,we consider the fidelity of a continuous-variable quantum teleportation through seawater channel.To enhance transmission performance,non-Gaussian operations have been conducted.Numerical simulations show that incorporating non-Gaussian operations enables the protocol to achieve higher fidelity transmission or lower fidelity fading rates over longer transmission distances.展开更多
We propose a quantum state protection scheme via quantum feedforward control combined with environment-assisted measurement to protect arbitrary unknown initial states from the finite-temperature thermal noise(FTTN).T...We propose a quantum state protection scheme via quantum feedforward control combined with environment-assisted measurement to protect arbitrary unknown initial states from the finite-temperature thermal noise(FTTN).The main strategy is to transfer the quantum system to a noise-robust state by weak measurement and feedforward control before the noise channel.Then we apply the environment-assisted measurement on the noise channel to select our desired damped states that are invertible to the initial state.After the noise channel,the reversal operations are applied to restore the initial state.We consider the protection of a single-qubit system,derive the analytical expressions of the success probability and the fidelity,and analyze the influence of key parameters on the performance of the proposed scheme.Unlike previous studies,there is no trade-off between the fidelity and the success probability in the proposed scheme;hence one could maximize them separately.Simulation results show that the proposed scheme can greatly improve the fidelity of the quantum state with a certain success probability.Moreover,the proposed scheme is successfully applied to improving the fidelity of controlled quantum teleportation through two independent FTTN channels from the perspective of protecting the shared entanglement.展开更多
Quantum teleportation is designed to send an unknown quantum state between two parties.In the perspective of remote quantum metrology,one may be interested in teleporting the information that is encoded by physical pa...Quantum teleportation is designed to send an unknown quantum state between two parties.In the perspective of remote quantum metrology,one may be interested in teleporting the information that is encoded by physical parameters synthesized by quantum Fisher information(QFI).However,the teleported QFI is often destroyed by the unavoidable interaction between the system and the environment.Here,we propose two schemes to improve the teleportation of QFI in the non-Markovian environment.One is to control the quantum system through the operations of weak measurement(WM)and corresponding quantum measurement reversal(QMR).The other is to modify the quantum system based on the monitoring result of the environment(i.e.,environment-assisted measurement,EAM).It is found that,in the non-Markovian environment,these two schemes can improve the teleportation of QFI.By selecting the appropriate strengths of WM and QMR,the environment noise can be completely eliminated and the initial QFI is perfectly teleported.A comprehensive comparison shows that the second scheme not only has a higher probability of success than the first one,but also has a significant improvement of the teleported QFI.展开更多
This article proposes and demonstrates a retrodirective array(RDA)for two-way wireless communication with automatic beam tracking.The proposed RDA is enabled by specifically designed chips made using a domestic comple...This article proposes and demonstrates a retrodirective array(RDA)for two-way wireless communication with automatic beam tracking.The proposed RDA is enabled by specifically designed chips made using a domestic complementary metal-oxide semiconductor(CMOS)process.The highly integrated CMOS chip includes a receiving(Rx)chain,a transmitting(Tx)chain,and a unique tracking phaselocked loop(PLL)for the crucial conjugated phase recovery in the RDA.This article also proposes a method to reduce the beam pointing error(BPE)in a conventional RDA.To validate the above ideas simply yet without loss of generality,a 2.4 GHz RDA is demonstrated through two-way communication links between the Rx and Tx chains,and an on-chip quadrature coupler is designed to achieve a nonretrodirective signal suppression of 23 dBc.The experimental results demonstrate that the proposed RDA,which incorporates domestically manufactured low-cost 0.18 lm CMOS chips,is capable of automatically tracking beams covering±40with a reduced BPE.Each CMOS chip in the RDA has a compact size of 4.62 mm^(2) and a low power consumption of 0.15 W.To the best of the authors’knowledge,this is the first research to demonstrate an RDA with a fully customized CMOS chip for wireless communication with automatic beam tracking。展开更多
The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In...The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In this study,we apply the TWCC method to improve the performance of reference-frame-independent quantum key distribution(RFI-QKD),and analyze the influence of the TWCC method on the performance of decoy-state RFI-QKD in both asymptotic and non-asymptotic cases.Our numerical simulation results show that the TWCC method is able to extend the maximal transmission distance from 175 km to 198 km and improve the tolerable bit error rate from 10.48%to 16.75%.At the same time,the performance of RFI-QKD in terms of the secret key rate and maximum transmission distance are still greatly improved when statistical fluctuations are considered.We conclude that RFI-QKD with the TWCC method is of practical interest.展开更多
In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)ca...In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)can be viewed as data collecting centers.To enhance the message exchange rate between S1 and S2,a problem of maximizing minimum rate is cast,where the variables,namely AF relay beamforming matrix and IRS phase shifts of two time slots,need to be optimized.To achieve a maximum rate,a low-complexity alternately iterative(AI)scheme based on zero forcing and successive convex approximation(LC-ZF-SCA)algorithm is presented.To obtain a significant rate enhancement,a high-performance AI method based on one step,semidefinite programming and penalty SCA(ONSSDP-PSCA)is proposed.Simulation results show that by the proposed LC-ZF-SCA and ONS-SDP-PSCA methods,the rate of the IRS-and-UAV-assisted AF relay network surpass those of with random phase and only AF relay networks.Moreover,ONS-SDP-PSCA perform better than LC-ZF-SCA in aspect of rate.展开更多
This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)node...This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm.展开更多
We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful ...We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful probability and fidelity of the four schemes reach 1. In the first two schemes, the receiver can only apply one of the unitary transformations to reconstruct the original state, making it easier for these two schemes to be directly realized. In the third and fourth schemes, the sender can preform Bell-state measurements instead of multipartite entanglement measurements of the existing similar schemes, which makes real experiments more suitable. It is found that the last three schemes may become tripartite controlled teleportation schemes of teleporting an arbitrary multi-particle state after a simple modification. Finally, we present a new scheme for three-party sharing an arbitrary unknown multi-particle state. In this scheme, the sender first shares three three-particle GHZ states with two agents. After setting up the secure quantum channel, an arbitrary unknown multi-particle state can be perfectly teleported if the sender performs three Bell-state measurements, and either of two receivers operates an appropriate unitary transformation to obtain the original state with the help of other receiver's three single-particle measurements. The successful probability and fidelity of this scheme also reach 1. It is demonstrated that this scheme can be generalized easily to the case of sharing an arbitrary unknown multi-particle state among several agents.展开更多
A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two ...A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.展开更多
The quantum secure direct communication (QSDC) protocol with a random basis and order is analysed and an effective attack, i.e. teleportation attack, is presented. An eavesdropper can obtain half of the transmitted ...The quantum secure direct communication (QSDC) protocol with a random basis and order is analysed and an effective attack, i.e. teleportation attack, is presented. An eavesdropper can obtain half of the transmitted secret bits with the help of this special attack. It is shown that quantum teleportation can be employed to weaken the role of the order-rearrangement encryption at least in a certain circumstance. Meanwhile, a possible improvement on this protocol is proposed, which makes it secure against this kind of attack.展开更多
An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity i...An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.展开更多
In this paper, a scheme which can be used in multi-user quantum digital signature is proposed. The scheme of signature and verification is based on the characters of GHZ (Greenberger-Horne-Zeilinger) states and cont...In this paper, a scheme which can be used in multi-user quantum digital signature is proposed. The scheme of signature and verification is based on the characters of GHZ (Greenberger-Horne-Zeilinger) states and controlled quantum teleportation. Different from the digital signatures based on computational complexity, this scheme is unconditional secure, and compared to the former presented quantum signature scheme, it does not rely on an arbitrator to verify the signature and realize a message can be signed by multi-user together.展开更多
In this paper a new scheme for teleporting an unknown entangled state of two particles is proposed. To weaken the requirement for the quantum channel, without loss of generality, two communicators only share a non-max...In this paper a new scheme for teleporting an unknown entangled state of two particles is proposed. To weaken the requirement for the quantum channel, without loss of generality, two communicators only share a non-maximally entangled two-particle state. Teleportation can be probabilistically realized if sender performs Bell-state measurements and Hadamard transformation and receiver introduces two auxiliary particles, operates C-not operation, single-qubit measurements and appropriate unitary transformations. The probability of successful teleportation is determined by the smaller one among the coefficients' absolute values of the quantum channel.展开更多
Recently,bidirectional quantum teleportation has attracted a great deal of research attention.However,existing bidirectional teleportation schemes are normally discussed on the basis of perfect quantum environments.In...Recently,bidirectional quantum teleportation has attracted a great deal of research attention.However,existing bidirectional teleportation schemes are normally discussed on the basis of perfect quantum environments.In this paper,we first put forward a bidirectional teleportation scheme to transport three-qubit Greenberger-Horne-Zeilinger(GHZ) states based on controled-not(CNOT) operation and single-qubit measurement.Then,we generalize it to the teleportation of multi-qubit GHZ states.Further,we discuss the influence of quantum noise on our scheme by the example of an amplitude damping channel,then we obtain the fidelity of the teleportation.Finally,we utilize the weak measurement and the corresponding reversing measurement to protect the quantum entanglement,which shows an effective enhancement of the teleportation fidelity.展开更多
This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct ...This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct advantages of the present scheme are: (i) The discrimination of 16 orthonormal cluster states in the standard teleportation protocol is transformed into the discrimination of single-atom states. Consequently, the discrimination difficulty of states is degraded. (ii) The scheme is insensitive to the cavity field state and the cavity decay for the thermal cavity is only virtually excited when atoms interact with it. Thus, the scheme is more feasible.展开更多
Utilizing the generalized measurement described by positive operator-wlued measure, this paper comes up with a protocol for teleportation of an unknown multi-particle entangled (GHZ) state with a certain probability...Utilizing the generalized measurement described by positive operator-wlued measure, this paper comes up with a protocol for teleportation of an unknown multi-particle entangled (GHZ) state with a certain probability. The feature of the present protocol is to weaken requirement for the quantum channel initially shared by sender and receiver. All unitary transformations performed by receiver are summarized into a formula. On the other hand, this paper explicitly constructs the efficient quantum circuits for implementing the proposed teleportation by means of universal quantum logic operations in quantum computation.展开更多
We propose a new scheme for controlled quantum teleportation with Bell states in which classical keys for controllers' portion are used. We also discuss the security of the proposed scheme and show that it can satisf...We propose a new scheme for controlled quantum teleportation with Bell states in which classical keys for controllers' portion are used. We also discuss the security of the proposed scheme and show that it can satisfy the requirements for controlled quantum teleportation. The comparison between this scheme and the previous ones shows that it is more economical and efficient.展开更多
An effective teleportation scheme for an unknown ionic internal state via trapped ions is proposed without joint Bell-state measurement (BSM). In the constructed quantum channel process, we make use of entanglement ...An effective teleportation scheme for an unknown ionic internal state via trapped ions is proposed without joint Bell-state measurement (BSM). In the constructed quantum channel process, we make use of entanglement swapping to avoid decrease in entanglement during the distributing of particles. Thus our scheme provides new prospects for quantum teleportatlon in a longer distance. The distinct advant.age of our scheme is insensitive to the heating of vibrational mode. Furthermore, our scheme has no any individual optical access, and the successful probability also can reach 1.展开更多
基金Project supported by the Natural Science Foundation of Shanxi Province of China (Grant No. 202203021221214)the National Natural Science Foundation of China (Grant Nos. 62122044, 62135008, 61925503, 11904218, 12004276, 12147215, and 11834010)+4 种基金the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province of China (Grant Nos. 2019L0092 and 2020L0029)the Key Project of the National Key Research and Development Program of China (Grant No. 2022YFA1404500)the Program for the Innovative Talents of Higher Education Institutions of Shanxi Province of Chinathe Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxithe Fund for Shanxi “1331 Project” Key Subjects Construction
文摘A quantum teleportation network involving multiple users is essential for future quantum internet.So far,controlled quantum teleportation has been demonstrated in a three-user network.However,versatile and controlled quantum teleportation network involving more users is in demand,which satisfies different combinations of users for practical requirements.Here we propose a highly versatile and controlled teleportation network that can switch among various combinations of different users.We use a single continuous-variable six-partite Greenberger-Horne-Zeilinger(GHZ)state to realize such a task by choosing the different measurement and feedback operations.The controlled teleportation network,which includes one sub-network,two sub-networks and three sub-networks,can be realized for different application of user combinations.Furthermore,the coherent feedback control(CFC)can manipulate and improve the teleportation performance.Our approach is flexible and scalable,and would provide a versatile platform for demonstrations of complex quantum communication and quantum computing protocols.
基金Project supported by the National Natural Science Foundation of China(Grant No.61871407)the Natural Science Foundation of Hunan Province,China(Grant No.2021JJ30878)the Key Research and Development Program of Hunan Province,China(Grant Nos.2020GK4063 and 2022GK2016)。
文摘Underwater quantum communication plays a crucial role in ensuring secure data transmission and extensible quantum networks in underwater environments.However,the implementation of such applications encounters challenges due to the light attenuation caused by the complicated natural seawater.This paper focuses on employing a model based on seawater chlorophyll-a concentration to characterize the absorption and scattering of light through quantum channels.We propose a multi-scattering random channel model,which demonstrates characteristics of the excess noise in different propagation directions of communication links.Furthermore,we consider the fidelity of a continuous-variable quantum teleportation through seawater channel.To enhance transmission performance,non-Gaussian operations have been conducted.Numerical simulations show that incorporating non-Gaussian operations enables the protocol to achieve higher fidelity transmission or lower fidelity fading rates over longer transmission distances.
基金the National Natural Science Foundation of China(Grant No.61973290)a Program from Ministry of Science and Technology of China(Grant No.QN2022200007L)。
文摘We propose a quantum state protection scheme via quantum feedforward control combined with environment-assisted measurement to protect arbitrary unknown initial states from the finite-temperature thermal noise(FTTN).The main strategy is to transfer the quantum system to a noise-robust state by weak measurement and feedforward control before the noise channel.Then we apply the environment-assisted measurement on the noise channel to select our desired damped states that are invertible to the initial state.After the noise channel,the reversal operations are applied to restore the initial state.We consider the protection of a single-qubit system,derive the analytical expressions of the success probability and the fidelity,and analyze the influence of key parameters on the performance of the proposed scheme.Unlike previous studies,there is no trade-off between the fidelity and the success probability in the proposed scheme;hence one could maximize them separately.Simulation results show that the proposed scheme can greatly improve the fidelity of the quantum state with a certain success probability.Moreover,the proposed scheme is successfully applied to improving the fidelity of controlled quantum teleportation through two independent FTTN channels from the perspective of protecting the shared entanglement.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61765007 and 12265004)Jiangxi Provincial Natural Science Foundation,China (Grant No.20212ACB211004)Innovation Foundation of Jiangxi University of Science and Technology (Grant No.XY2021-S088)。
文摘Quantum teleportation is designed to send an unknown quantum state between two parties.In the perspective of remote quantum metrology,one may be interested in teleporting the information that is encoded by physical parameters synthesized by quantum Fisher information(QFI).However,the teleported QFI is often destroyed by the unavoidable interaction between the system and the environment.Here,we propose two schemes to improve the teleportation of QFI in the non-Markovian environment.One is to control the quantum system through the operations of weak measurement(WM)and corresponding quantum measurement reversal(QMR).The other is to modify the quantum system based on the monitoring result of the environment(i.e.,environment-assisted measurement,EAM).It is found that,in the non-Markovian environment,these two schemes can improve the teleportation of QFI.By selecting the appropriate strengths of WM and QMR,the environment noise can be completely eliminated and the initial QFI is perfectly teleported.A comprehensive comparison shows that the second scheme not only has a higher probability of success than the first one,but also has a significant improvement of the teleported QFI.
基金supported in part by the National Key Research and Development Program of China(2019YFB2204701)in part by the National Natural Science Foundation of China(61831006,62022023,and 62250610223)in part by the Big Data Computing Center at Southeast University for numerical calculation.
文摘This article proposes and demonstrates a retrodirective array(RDA)for two-way wireless communication with automatic beam tracking.The proposed RDA is enabled by specifically designed chips made using a domestic complementary metal-oxide semiconductor(CMOS)process.The highly integrated CMOS chip includes a receiving(Rx)chain,a transmitting(Tx)chain,and a unique tracking phaselocked loop(PLL)for the crucial conjugated phase recovery in the RDA.This article also proposes a method to reduce the beam pointing error(BPE)in a conventional RDA.To validate the above ideas simply yet without loss of generality,a 2.4 GHz RDA is demonstrated through two-way communication links between the Rx and Tx chains,and an on-chip quadrature coupler is designed to achieve a nonretrodirective signal suppression of 23 dBc.The experimental results demonstrate that the proposed RDA,which incorporates domestically manufactured low-cost 0.18 lm CMOS chips,is capable of automatically tracking beams covering±40with a reduced BPE.Each CMOS chip in the RDA has a compact size of 4.62 mm^(2) and a low power consumption of 0.15 W.To the best of the authors’knowledge,this is the first research to demonstrate an RDA with a fully customized CMOS chip for wireless communication with automatic beam tracking。
基金supported by the National Natural Science Foundation of China(Grant Nos.61505261,62101597,61605248,and 61675235)the National Key Research and Development Program of China(Grant No.2020YFA0309702)+2 种基金the China Postdoctoral Science Foundation(Grant No.2021M691536)the Natural Science Foundation of Henan Province(Grant Nos.202300410534 and 202300410532)the Anhui Initiative in Quantum Information Technologies.
文摘The data post-processing scheme based on two-way classical communication(TWCC)can improve the tolerable bit error rate and extend the maximal transmission distance when used in a quantum key distribution(QKD)system.In this study,we apply the TWCC method to improve the performance of reference-frame-independent quantum key distribution(RFI-QKD),and analyze the influence of the TWCC method on the performance of decoy-state RFI-QKD in both asymptotic and non-asymptotic cases.Our numerical simulation results show that the TWCC method is able to extend the maximal transmission distance from 175 km to 198 km and improve the tolerable bit error rate from 10.48%to 16.75%.At the same time,the performance of RFI-QKD in terms of the secret key rate and maximum transmission distance are still greatly improved when statistical fluctuations are considered.We conclude that RFI-QKD with the TWCC method is of practical interest.
基金supported in part by the National Natural Science Foundation of China (Nos.U22A2002, and 62071234)the Hainan Province Science and Technology Special Fund (ZDKJ2021022)+1 种基金the Scientific Research Fund Project of Hainan University under Grant KYQD(ZR)-21008the Collaborative Innovation Center of Information Technology, Hainan University (XTCX2022XXC07)
文摘In this paper,an intelligent reflecting surface(IRS)-and-unmanned aerial vehicle(UAV)-assisted two-way amplify-and-forward(AF)relay network in maritime Internet of Things(IoT)is proposed,where ship1(S1)and ship2(S2)can be viewed as data collecting centers.To enhance the message exchange rate between S1 and S2,a problem of maximizing minimum rate is cast,where the variables,namely AF relay beamforming matrix and IRS phase shifts of two time slots,need to be optimized.To achieve a maximum rate,a low-complexity alternately iterative(AI)scheme based on zero forcing and successive convex approximation(LC-ZF-SCA)algorithm is presented.To obtain a significant rate enhancement,a high-performance AI method based on one step,semidefinite programming and penalty SCA(ONSSDP-PSCA)is proposed.Simulation results show that by the proposed LC-ZF-SCA and ONS-SDP-PSCA methods,the rate of the IRS-and-UAV-assisted AF relay network surpass those of with random phase and only AF relay networks.Moreover,ONS-SDP-PSCA perform better than LC-ZF-SCA in aspect of rate.
基金supported in part by the National Natural Science Foundation of China under Grant 61971450in part by the Hunan Provincial Science and Technology Project Foundation under Grant 2018TP1018+1 种基金in part by the Natural Science Foundation of Hunan Province under Grant 2018JJ2533in part by Hunan Province College Students Research Learning and Innovative Experiment Project under Grant S202110542056。
文摘This paper investigates the security and reliability of information transmission within an underlay wiretap energy harvesting cognitive two-way relay network.In the network,energy-constrained secondary network(SN)nodes harvest energy from radio frequency signals of a multi-antenna power beacon.Two SN sources exchange their messages via a SN decode-and-forward relay in the presence of a multiantenna eavesdropper by using a four-phase time division broadcast protocol,and the hardware impairments of SN nodes and eavesdropper are modeled.To alleviate eavesdropping attacks,the artificial noise is applied by SN nodes.The physical layer security performance of SN is analyzed and evaluated by the exact closed-form expressions of outage probability(OP),intercept probability(IP),and OP+IP over quasistatic Rayleigh fading channel.Additionally,due to the complexity of OP+IP expression,a self-adaptive chaotic quantum particle swarm optimization-based resource allocation algorithm is proposed to jointly optimize energy harvesting ratio and power allocation factor,which can achieve security-reliability tradeoff for SN.Extensive simulations demonstrate the correctness of theoretical analysis and the effectiveness of the proposed optimization algorithm.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11071178)
文摘We first provide four new schemes for two-party quantum teleportation of an arbitrary unknown multi-particle state by using three-, four-, and five-particle states as the quantum channel, respectively. The successful probability and fidelity of the four schemes reach 1. In the first two schemes, the receiver can only apply one of the unitary transformations to reconstruct the original state, making it easier for these two schemes to be directly realized. In the third and fourth schemes, the sender can preform Bell-state measurements instead of multipartite entanglement measurements of the existing similar schemes, which makes real experiments more suitable. It is found that the last three schemes may become tripartite controlled teleportation schemes of teleporting an arbitrary multi-particle state after a simple modification. Finally, we present a new scheme for three-party sharing an arbitrary unknown multi-particle state. In this scheme, the sender first shares three three-particle GHZ states with two agents. After setting up the secure quantum channel, an arbitrary unknown multi-particle state can be perfectly teleported if the sender performs three Bell-state measurements, and either of two receivers operates an appropriate unitary transformation to obtain the original state with the help of other receiver's three single-particle measurements. The successful probability and fidelity of this scheme also reach 1. It is demonstrated that this scheme can be generalized easily to the case of sharing an arbitrary unknown multi-particle state among several agents.
文摘A scheme for teleporting an arbitrary and unknown three-particle state from a sender to either one of two receivers is proposed. The quantum channel is composed of a two-particle non-maximally entangled state and two three-particle non-maximally entangled W states. An arbitrary three-particle state can be perfectly teleported probabilistically if the sender performs three generalized Bell-state measurements and sends to the two receivers the classical result of these measurements, and either one of the two receivers adopts an appropriate unitary transformation conditioned on the suitable measurement outcomes of the other receiver. All kinds of unitary transformations are given in detail.
基金supported by the National High Technology Development Program of China (Grant No 2006AA01Z419)the Major Research Plan of the National Natural Science Foundation of China (Grant No 90604023)+2 种基金the National Laboratory for Modern Communications Science Foundation of China (Grant No 9140C1101010601)the Natural Science Foundation of Beijing of China(Grant No 4072020)the Integrated Services Network Open Foundation
文摘The quantum secure direct communication (QSDC) protocol with a random basis and order is analysed and an effective attack, i.e. teleportation attack, is presented. An eavesdropper can obtain half of the transmitted secret bits with the help of this special attack. It is shown that quantum teleportation can be employed to weaken the role of the order-rearrangement encryption at least in a certain circumstance. Meanwhile, a possible improvement on this protocol is proposed, which makes it secure against this kind of attack.
基金Project supported by the National Natural Science Foundation of China (Grant No 10225421).
文摘An alternative scheme is presented for teleportation of a two-atom entangled state in cavity quantum electrodynamics (QED). It is based on the resonant atom-cavity field interaction. In the scheme, only one cavity is involved, and the number of the atoms needed to be detected is decreased compared with the previous scheme. Since the resonant atom-cavity field interaction greatly reduces the interaction time, the decoherence effect can be effectively suppressed during the teleportation process. The experimental feasibility of the scheme is discussed. The scheme can easily be generalized to the teleportation of N-atom Greeninger-Horne-Zeilinger (GHZ) entangled states. The number of atoms needed to be detected does not increase as the number of the atoms in the GHZ state increases.
基金Supported by the National Natural Science Foundation of China (60572035, 10505005) the Foundation of Beijing Municipality Key Laboratory of Communication and Information System (JD100040513)
文摘In this paper, a scheme which can be used in multi-user quantum digital signature is proposed. The scheme of signature and verification is based on the characters of GHZ (Greenberger-Horne-Zeilinger) states and controlled quantum teleportation. Different from the digital signatures based on computational complexity, this scheme is unconditional secure, and compared to the former presented quantum signature scheme, it does not rely on an arbitrator to verify the signature and realize a message can be signed by multi-user together.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60472017 and 10575017).
文摘In this paper a new scheme for teleporting an unknown entangled state of two particles is proposed. To weaken the requirement for the quantum channel, without loss of generality, two communicators only share a non-maximally entangled two-particle state. Teleportation can be probabilistically realized if sender performs Bell-state measurements and Hadamard transformation and receiver introduces two auxiliary particles, operates C-not operation, single-qubit measurements and appropriate unitary transformations. The probability of successful teleportation is determined by the smaller one among the coefficients' absolute values of the quantum channel.
基金Project supported by the National Natural Science Foundation of China(Grant No.61172071)the Scientific Research Program Funded by Shaanxi Provincial Education Department,China(Grant No.16JK1711)+1 种基金the International Scientific Cooperation Program of Shaanxi Province,China(Grant No.2015KW-013)the Natural Science Foundation Research Project of Shaanxi Province,China(Grant No.2016JQ6033)
文摘Recently,bidirectional quantum teleportation has attracted a great deal of research attention.However,existing bidirectional teleportation schemes are normally discussed on the basis of perfect quantum environments.In this paper,we first put forward a bidirectional teleportation scheme to transport three-qubit Greenberger-Horne-Zeilinger(GHZ) states based on controled-not(CNOT) operation and single-qubit measurement.Then,we generalize it to the teleportation of multi-qubit GHZ states.Further,we discuss the influence of quantum noise on our scheme by the example of an amplitude damping channel,then we obtain the fidelity of the teleportation.Finally,we utilize the weak measurement and the corresponding reversing measurement to protect the quantum entanglement,which shows an effective enhancement of the teleportation fidelity.
基金supported by the Program for New Century Excellent Talents at the University of China (Grant No NCET-06-0554)the National Natural Science Foundation of China (Grant Nos 60677001 and 10747146)+3 种基金the Science-Technology Fund of AnhuiProvince for Outstanding Youth of China (Grant No 06042087)the Key Fund of the Ministry of Education of China (Grant No 206063)the Natural Science Foundation of Guangdong Province of China (Grant Nos 06300345 and 7007806)Natural Science Foundation of Hubei Province of China (Grant No 2006ABA354)
文摘This paper proposes a scheme for implementing the teleportation of an arbitrary unknown two-atom state by using a cluster state of four identical 2-level atoms as quantum channel in a thermal cavity. The two distinct advantages of the present scheme are: (i) The discrimination of 16 orthonormal cluster states in the standard teleportation protocol is transformed into the discrimination of single-atom states. Consequently, the discrimination difficulty of states is degraded. (ii) The scheme is insensitive to the cavity field state and the cavity decay for the thermal cavity is only virtually excited when atoms interact with it. Thus, the scheme is more feasible.
基金Project supported by the National High Technology Research and Development Program of China(Grant No2006AA01Z419)the Major Research Plan of the National Natural Foundation of China(Grant No90604023)+1 种基金the National Laboratory for Modern Communications Science Foundation of China(Grant No9140C1101010601)the Natural Science Foundation of Beijing(Grant No4072020)
文摘Utilizing the generalized measurement described by positive operator-wlued measure, this paper comes up with a protocol for teleportation of an unknown multi-particle entangled (GHZ) state with a certain probability. The feature of the present protocol is to weaken requirement for the quantum channel initially shared by sender and receiver. All unitary transformations performed by receiver are summarized into a formula. On the other hand, this paper explicitly constructs the efficient quantum circuits for implementing the proposed teleportation by means of universal quantum logic operations in quantum computation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60873191,60903152,61003286 and 60821001)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant Nos. 200800131016 and 20090005110010)+2 种基金the Beijing Nova Program,China (Grant No. 2008B51)the Key Project of the Chinese Ministry of Education (Grant No. 109014)the Natural Science Foundation of Educational Bureau of Henan Province,China (Grant No. 2010B120008)
文摘We propose a new scheme for controlled quantum teleportation with Bell states in which classical keys for controllers' portion are used. We also discuss the security of the proposed scheme and show that it can satisfy the requirements for controlled quantum teleportation. The comparison between this scheme and the previous ones shows that it is more economical and efficient.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025).
文摘An effective teleportation scheme for an unknown ionic internal state via trapped ions is proposed without joint Bell-state measurement (BSM). In the constructed quantum channel process, we make use of entanglement swapping to avoid decrease in entanglement during the distributing of particles. Thus our scheme provides new prospects for quantum teleportatlon in a longer distance. The distinct advant.age of our scheme is insensitive to the heating of vibrational mode. Furthermore, our scheme has no any individual optical access, and the successful probability also can reach 1.