Connected vehicle(CV)is regarded as a typical feature of the future road transportation system.One core benefit of promoting CV is to improve traffic safety,and to achieve that,accurate driving risk assessment under V...Connected vehicle(CV)is regarded as a typical feature of the future road transportation system.One core benefit of promoting CV is to improve traffic safety,and to achieve that,accurate driving risk assessment under Vehicle-to-Vehicle(V2V)communications is critical.There are two main differences concluded by comparing driving risk assessment under the CV environment with traditional ones:(1)the CV environment provides high-resolution and multi-dimensional data,e.g.,vehicle trajectory data,(2)Rare existing studies can comprehensively address the heterogeneity of the vehicle operating environment,e.g.,the multiple interacting objects and the time-series variability.Hence,this study proposes a driving risk assessment framework under the CV environment.Specifically,first,a set of time-series top views was proposed to describe the CV environment data,expressing the detailed information on the vehicles surrounding the subject vehicle.Then,a hybrid CNN-LSTM model was established with the CNN component extracting the spatial interaction with multiple interacting vehicles and the LSTM component solving the time-series variability of the driving environment.It is proved that this model can reach an AUC of 0.997,outperforming the existing machine learning algorithms.This study contributes to the improvement of driving risk assessment under the CV environment.展开更多
Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intel...Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intelligent vehicles for signalized at-grade intersections are indispensable.Vehicle-to-infrastructure communication technology offers unprecedented clues to reduce the delay at signalized intersections by innovative information-based control strategies.This paper proposes a new dynamic control strategy for signalized intersections with vehicle-to-signal information.The proposed strategy is called periodic vehicle holding(PVH)strategy while the traffic signal can provide information for the vehicles that are approaching an intersection.Under preliminary autonomous vehicle(PAV)environment,left-turning and through-moving vehicles will be sorted based on different information they receive.The paper shows how PVH reorganizes traffic to increase the capacity of an intersection without causing severe spillback to the upstream intersection.Results show that PVH can reduce the delay by approximately 15%at a signalized intersection under relatively high traffic demand.展开更多
This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observati...This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments.展开更多
Significant advances in battery technology are creating a viable marketspace for battery powered passenger vehicles.Climate change and concerns over reliable supplies of hydrocarbons are aiding in the focus on electri...Significant advances in battery technology are creating a viable marketspace for battery powered passenger vehicles.Climate change and concerns over reliable supplies of hydrocarbons are aiding in the focus on electric vehicles.Consumers can be influenced by marketing and emotion resulting in behaviors that may not be in line with their stated objectives.Although sales of electric vehicles are accelerating,it may not be clear that purchasing an electric vehicle is advantageous from an economic or environmental perspective.A technoeconomic analysis of electric vehicles comparing them against hybrids,gasoline and diesel vehicles is presented.The results show that the complexity of electrical power supply,infrastructure requirements and full life cycle concerns show that electric vehicles have a place in the future but that ongoing improvements will be required for them to be clearly the best choice for a given situation.展开更多
Driving behavior is one of the main reasons that causes bottleneck on the freeway or restricts the capacity of signalized intersections.This paper proposes a car-following scheme in a model predictive control(MPC)fram...Driving behavior is one of the main reasons that causes bottleneck on the freeway or restricts the capacity of signalized intersections.This paper proposes a car-following scheme in a model predictive control(MPC)framework to improve the traffic flow behavior,particularly in stopping and speeding up of individual vehicles in dense urban traffic under a connected vehicle(CV)environment.Using information received through vehicle-to-vehicle(V2V)communication,the scheme predicts the future states of the preceding vehicle and computes the control input by solving a constrained optimization problem considering a finite future horizon.The objective function is to minimize the weighted costs due to speed deviation,control input,and unsafe gaps.The scheme shares the planned driving information with the following vehicles so that they can make better cooperative driving decision.The proposed car-following scheme is simulated in a typical driving scenario with multiple vehicles in dense traffic that has to stop at red signals in multiple intersections.The speeding up or queue clearing and stopping characteristics of the traffic using the proposed scheme is compared with the existing car-following scheme through numerical simulation.展开更多
基金sponsored by the Zhejiang Province Science and Technology Major Project of China(No.2021C01011)the National Natural Science Foundation of China(NSFC)(No.52172349)the China Scholarship Council(CSC).
文摘Connected vehicle(CV)is regarded as a typical feature of the future road transportation system.One core benefit of promoting CV is to improve traffic safety,and to achieve that,accurate driving risk assessment under Vehicle-to-Vehicle(V2V)communications is critical.There are two main differences concluded by comparing driving risk assessment under the CV environment with traditional ones:(1)the CV environment provides high-resolution and multi-dimensional data,e.g.,vehicle trajectory data,(2)Rare existing studies can comprehensively address the heterogeneity of the vehicle operating environment,e.g.,the multiple interacting objects and the time-series variability.Hence,this study proposes a driving risk assessment framework under the CV environment.Specifically,first,a set of time-series top views was proposed to describe the CV environment data,expressing the detailed information on the vehicles surrounding the subject vehicle.Then,a hybrid CNN-LSTM model was established with the CNN component extracting the spatial interaction with multiple interacting vehicles and the LSTM component solving the time-series variability of the driving environment.It is proved that this model can reach an AUC of 0.997,outperforming the existing machine learning algorithms.This study contributes to the improvement of driving risk assessment under the CV environment.
文摘Autonomous vehicle technology will transform fundamentally urban traffic systems.To better enhance the coming era of connected and autonomous vehicles,effective control strategies that interact wisely with these intelligent vehicles for signalized at-grade intersections are indispensable.Vehicle-to-infrastructure communication technology offers unprecedented clues to reduce the delay at signalized intersections by innovative information-based control strategies.This paper proposes a new dynamic control strategy for signalized intersections with vehicle-to-signal information.The proposed strategy is called periodic vehicle holding(PVH)strategy while the traffic signal can provide information for the vehicles that are approaching an intersection.Under preliminary autonomous vehicle(PAV)environment,left-turning and through-moving vehicles will be sorted based on different information they receive.The paper shows how PVH reorganizes traffic to increase the capacity of an intersection without causing severe spillback to the upstream intersection.Results show that PVH can reduce the delay by approximately 15%at a signalized intersection under relatively high traffic demand.
基金supported by National High Technology Research Development Program of China (863 Program) (No.2011AA040202)National Science Foundation of China (No.51005008)
文摘This paper presents a hierarchical simultaneous localization and mapping(SLAM) system for a small unmanned aerial vehicle(UAV) using the output of an inertial measurement unit(IMU) and the bearing-only observations from an onboard monocular camera.A homography based approach is used to calculate the motion of the vehicle in 6 degrees of freedom by image feature match.This visual measurement is fused with the inertial outputs by an indirect extended Kalman filter(EKF) for attitude and velocity estimation.Then,another EKF is employed to estimate the position of the vehicle and the locations of the features in the map.Both simulations and experiments are carried out to test the performance of the proposed system.The result of the comparison with the referential global positioning system/inertial navigation system(GPS/INS) navigation indicates that the proposed SLAM can provide reliable and stable state estimation for small UAVs in GPS-denied environments.
文摘Significant advances in battery technology are creating a viable marketspace for battery powered passenger vehicles.Climate change and concerns over reliable supplies of hydrocarbons are aiding in the focus on electric vehicles.Consumers can be influenced by marketing and emotion resulting in behaviors that may not be in line with their stated objectives.Although sales of electric vehicles are accelerating,it may not be clear that purchasing an electric vehicle is advantageous from an economic or environmental perspective.A technoeconomic analysis of electric vehicles comparing them against hybrids,gasoline and diesel vehicles is presented.The results show that the complexity of electrical power supply,infrastructure requirements and full life cycle concerns show that electric vehicles have a place in the future but that ongoing improvements will be required for them to be clearly the best choice for a given situation.
文摘Driving behavior is one of the main reasons that causes bottleneck on the freeway or restricts the capacity of signalized intersections.This paper proposes a car-following scheme in a model predictive control(MPC)framework to improve the traffic flow behavior,particularly in stopping and speeding up of individual vehicles in dense urban traffic under a connected vehicle(CV)environment.Using information received through vehicle-to-vehicle(V2V)communication,the scheme predicts the future states of the preceding vehicle and computes the control input by solving a constrained optimization problem considering a finite future horizon.The objective function is to minimize the weighted costs due to speed deviation,control input,and unsafe gaps.The scheme shares the planned driving information with the following vehicles so that they can make better cooperative driving decision.The proposed car-following scheme is simulated in a typical driving scenario with multiple vehicles in dense traffic that has to stop at red signals in multiple intersections.The speeding up or queue clearing and stopping characteristics of the traffic using the proposed scheme is compared with the existing car-following scheme through numerical simulation.