Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their dail...Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their daily travels and accurate speed predictions of these routes are possible with random prediction and machine learning,but the prediction accuracy still needs to be improved.The prediction accuracy of traditional prediction algorithms is difficult to further improve after reaching a certain accuracy;problems,such as over fitting,occur in the process of improving prediction accuracy.The combined prediction model proposed in this paper can abandon the transitional dependence on a single prediction.By combining the two prediction algorithms,the fusion of prediction performance is achieved,the limit of the single prediction performance is crossed,and the goal of improving vehicle speed prediction performance is achieved.In this paper,an extraction method suitable for fixed route vehicle speed is designed.The application of Markov and back propagation(BP)neural network in predictions is introduced.Three new combined prediction methods,all named Markov and BP Neural Network(MBNN)combined prediction algorithm,are proposed,which make full use of the advantages of Markov and BP neural network algorithms.Finally,the comparison among the prediction methods has been carried out.The results show that the three MBNN models have improved by about 19%,28%,and 29%compared with the Markov prediction model,which has better performance in the single prediction models.Overall,the MBNN combined prediction models can improve the prediction accuracy by 25.3%on average,which provides important support for the possible optimization of plug-in hybrid electric vehicle energy consumption.展开更多
Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(...Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(MC), point of tangent(PT) and 50 m beyond PT on four-lane median divided rural highways. The car and SUV speed data were combined in the analysis as they were found to be normally distributed and not significantly different. Independent parameters representing geometric features and speed at the preceding section were logically selected in stepwise regression analyses to develop the models. Speeds at various locations were found to be dependent on some combinations of curve length, curvature and speed in the immediately preceding section of the highway. Curve length had a significant effect on the speed at locations 50 m prior to PC, PC and MC. The effect of curvature on speed was observed only at MC. The curve geometry did not have a significant effect on speed from PT onwards. The speed at 50 m prior to PC and curvature is the most significant parameter that affects the speed at PC and MC, respectively. Before entering a horizontal curve, drivers possibly perceive the curve based on its length. Longer curve encourages drivers to maintain higher speed in the preceding tangent section. Further, drivers start experiencing the effect of curvature only after entering the curve and adjust speed accordingly. Practitioners can use these findings in designing consistent horizontal curve for vehicle speed harmony.展开更多
Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interact...Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interaction between fore or aft propeller and wake of the vehicle,and the interaction between fore and aft propeller. Based on a combination of the lifting surface theory and acoustic method, the prediction of line-spectrum noise is presented in this paper.Theoretical calculation method, characteristics and numerical prediction of the line-spectrum noise are detailed too. The effect of different wake and different distance between fore and aft propeller on the propeller noise is also studied by numerical method. The agreement of predicted results compared with existing experimental data is quite satisfactory.展开更多
基金National Natural Science Foundation of China(Grant No.51775478)Hebei Provincial Natural Science Foundation of China(Grant Nos.E2016203173,E2020203078).
文摘Achieving accurate speed prediction provides the most critical support parameter for high-level energy management of plug-in hybrid electric vehicles.Nowadays,people often drive a vehicle on fixed routes in their daily travels and accurate speed predictions of these routes are possible with random prediction and machine learning,but the prediction accuracy still needs to be improved.The prediction accuracy of traditional prediction algorithms is difficult to further improve after reaching a certain accuracy;problems,such as over fitting,occur in the process of improving prediction accuracy.The combined prediction model proposed in this paper can abandon the transitional dependence on a single prediction.By combining the two prediction algorithms,the fusion of prediction performance is achieved,the limit of the single prediction performance is crossed,and the goal of improving vehicle speed prediction performance is achieved.In this paper,an extraction method suitable for fixed route vehicle speed is designed.The application of Markov and back propagation(BP)neural network in predictions is introduced.Three new combined prediction methods,all named Markov and BP Neural Network(MBNN)combined prediction algorithm,are proposed,which make full use of the advantages of Markov and BP neural network algorithms.Finally,the comparison among the prediction methods has been carried out.The results show that the three MBNN models have improved by about 19%,28%,and 29%compared with the Markov prediction model,which has better performance in the single prediction models.Overall,the MBNN combined prediction models can improve the prediction accuracy by 25.3%on average,which provides important support for the possible optimization of plug-in hybrid electric vehicle energy consumption.
基金Indian Institute of Technology Bombay for providing funding (Project code:13IRCCSG001)
文摘Sites with varying geometric features were analyzed to develop the 85 th percentile speed prediction models for car and sports utility vehicle(SUV) at 50 m prior to the point of curvature(PC), PC, midpoint of a curve(MC), point of tangent(PT) and 50 m beyond PT on four-lane median divided rural highways. The car and SUV speed data were combined in the analysis as they were found to be normally distributed and not significantly different. Independent parameters representing geometric features and speed at the preceding section were logically selected in stepwise regression analyses to develop the models. Speeds at various locations were found to be dependent on some combinations of curve length, curvature and speed in the immediately preceding section of the highway. Curve length had a significant effect on the speed at locations 50 m prior to PC, PC and MC. The effect of curvature on speed was observed only at MC. The curve geometry did not have a significant effect on speed from PT onwards. The speed at 50 m prior to PC and curvature is the most significant parameter that affects the speed at PC and MC, respectively. Before entering a horizontal curve, drivers possibly perceive the curve based on its length. Longer curve encourages drivers to maintain higher speed in the preceding tangent section. Further, drivers start experiencing the effect of curvature only after entering the curve and adjust speed accordingly. Practitioners can use these findings in designing consistent horizontal curve for vehicle speed harmony.
文摘Line-Spectrum noise of counter-rotation propellers has constructed the main part of the radiated noise of high speed vehicles in water. The line-spectrum noise of the counter-rotation propellers is due to the interaction between fore or aft propeller and wake of the vehicle,and the interaction between fore and aft propeller. Based on a combination of the lifting surface theory and acoustic method, the prediction of line-spectrum noise is presented in this paper.Theoretical calculation method, characteristics and numerical prediction of the line-spectrum noise are detailed too. The effect of different wake and different distance between fore and aft propeller on the propeller noise is also studied by numerical method. The agreement of predicted results compared with existing experimental data is quite satisfactory.