In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver...In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.展开更多
We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectl...We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0.展开更多
This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible...This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible viscous magnetohydrodynamic equa- tions, first the convergence-stability principle is established. Then it is shown that, when the Much number is sufficiently small, the periodic initial value problems of the equations have a unique smooth solution in the time interval, where the incompressible viscous mag- netohydrodynamic equations have a smooth solution. When the latter has a global smooth solution, the maximal existence time for the former tends to infinity as the Much number goes to zero. Moreover, the authors prove the convergence of smooth solutions of the equa- tions towards those of the incompressible viscous magnetohydrodynamic equations with a sharp convergence rate.展开更多
基金supported by the NSFC Grant 11901555,12271499the Cyrus Tang Foundationsupported by the NSFC Grant 11871448 and 12126604.
文摘In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.
基金supported partially by NSFC(11671193,11971234)supported partially by the China Postdoctoral Science Foundation(2019M650581).
文摘We investigate the uniform regularity and zero kinematic viscosity-magnetic diffusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnetic field in a smooth bounded domain Ω⊂R^(3).It is shown that there exists a unique strong solution to the incompressible viscous magnetohydrodynamic equations in a finite time interval which is independent of the viscosity coefficient and the magnetic diffusivity coefficient.The solution is uniformly bounded in a conormal Sobolev space and W^(1,∞)(Ω)which allows us to take the zero kinematic viscosity-magnetic diffusion limit.Moreover,we also get the rates of convergence in L^(∞)(0,T;L^(2)),L^(∞)(0,T;W^(1,p))(2≤p<∞),and L^(∞)((0,T)×Ω)for some T>0.
基金supported by the National Natural Science Foundation of China(No.11171223)the Doctoral Program Foundation of Ministry of Education of China(No.20133127110007)the Innovation Program of Shanghai Municipal Education Commission(No.13ZZ109)
文摘This paper is concerned with the zero Mach number limit of the three-dimension- al compressible viscous magnetohydrodynamic equations. More precisely, based on the local existence of the three-dimensional compressible viscous magnetohydrodynamic equa- tions, first the convergence-stability principle is established. Then it is shown that, when the Much number is sufficiently small, the periodic initial value problems of the equations have a unique smooth solution in the time interval, where the incompressible viscous mag- netohydrodynamic equations have a smooth solution. When the latter has a global smooth solution, the maximal existence time for the former tends to infinity as the Much number goes to zero. Moreover, the authors prove the convergence of smooth solutions of the equa- tions towards those of the incompressible viscous magnetohydrodynamic equations with a sharp convergence rate.