It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations(VIV) of cylinders. In this paper, a novel in-line(IL) and cross-flow(CF) coupling VIV prediction model for circular c...It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations(VIV) of cylinders. In this paper, a novel in-line(IL) and cross-flow(CF) coupling VIV prediction model for circular cylinders has been proposed, in which the influence of the Reynolds number was comprehensively considered. The Strouhal number linked with the vortex shedding frequency was calculated through a function of the Reynolds number. The coefficient of the mean drag force was fitted as a new piecewise function of the Reynolds number, and its amplification resulted from the CF VIV was also taken into account. The oscillating drag and lift forces were modelled with classical van der Pol wake oscillators and their empirical parameters were determined based on the lock-in boundaries and the peak-amplitude formulas. A new peak-amplitude formula for the IL VIV was developed under the resonance condition with respect to the mass-damping ratio and the Reynolds number. When compared with the results from the experiments and some other prediction models, the present model could give good estimations on the vibration amplitudes and frequencies of the VIV both for elastically-mounted rigid and long flexible cylinders. The present model considering the influence of the Reynolds number could generally provide better results than that neglecting the effect of the Reynolds number.展开更多
This article proposes a new wake oscillator model for vortex induced vibrations of an elastically supported rigid circular cylinder in a uniform current. The near wake dynamics related with the fluctuating nature of v...This article proposes a new wake oscillator model for vortex induced vibrations of an elastically supported rigid circular cylinder in a uniform current. The near wake dynamics related with the fluctuating nature of vortex shedding is modeled based on the classical van der Pol equation, combined with the equation for the oscillatory motion of the body. An appropriate approach is developed to estimate the empirical parameters in the wake oscillator model. The present predicted results are compared to the experimental data and previous wake oscillator model results. Good agreement with experimental results is found.展开更多
The fluctuating furces of the fluid exerted on the top terrsioned riser ('FIR) in the in-line and cross-flow directions are both modeled by van del Pol wake oscillator model and the nonlinear coupled dynamics of th...The fluctuating furces of the fluid exerted on the top terrsioned riser ('FIR) in the in-line and cross-flow directions are both modeled by van del Pol wake oscillator model and the nonlinear coupled dynamics of the in-line and cross-flow vortex-induced vibrations (VIV) of the riser are analyzed in time domain in this papar. The numencal shnulation results of the riser's in-line and cross-flow displacements and curvatures are compared with experimental measurements and the comparison shows the validity of this method in modeling some main features of the riser's VIV. Finally, the effects of the riser's top tensions and internal flow velocities on the coupled vibrations of the riser are investigated.展开更多
The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. ...The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model. It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice.展开更多
An improved three-dimensional(3D)time-domain couple model is established in this paper to simulate the bidirectional vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to oblique currents.In th...An improved three-dimensional(3D)time-domain couple model is established in this paper to simulate the bidirectional vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to oblique currents.In this model,the nonlinear motion equations of the riser are established in the global coordinate system based on the slender rod theory with the finite element method.Van der Pol equations are used to describe the lift forces induced by the x-and y-direction current components,respectively.The coupled equations at each time step are solved by a Newmark-βiterative scheme for the SWR VIV.The present model is verified by comparison with the published experimental results for a top-tension riser.Then,a series of simulations are executed to determine the influences of the oblique angle/velocity of the current,different top-end positions and the length of the buoyancy segment on the VIV displacement,oscillating frequency as well as hydrodynamic coefficients of the SWR.The results demonstrate that there exists a coupled resonant VIV corresponding to x-direction and y-direction,respectively.However,the effective frequency is almost identical between the vibrations at the hang-off segment along x and y directions.The addition of the buoyancy modules in the middle of the SWR has a beneficial impact on the lift force of three segments and simultaneously limits the VIV response,especially at the decline segment and the hang-off segments.Additionally,the incident current direction significantly affects the motion trajectory of the SWR which mainly includes the fusiform and rectangle shapes.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51379144,51479135 and51679167)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51621092)
文摘It is well known that the Reynolds number has a significant effect on the vortex-induced vibrations(VIV) of cylinders. In this paper, a novel in-line(IL) and cross-flow(CF) coupling VIV prediction model for circular cylinders has been proposed, in which the influence of the Reynolds number was comprehensively considered. The Strouhal number linked with the vortex shedding frequency was calculated through a function of the Reynolds number. The coefficient of the mean drag force was fitted as a new piecewise function of the Reynolds number, and its amplification resulted from the CF VIV was also taken into account. The oscillating drag and lift forces were modelled with classical van der Pol wake oscillators and their empirical parameters were determined based on the lock-in boundaries and the peak-amplitude formulas. A new peak-amplitude formula for the IL VIV was developed under the resonance condition with respect to the mass-damping ratio and the Reynolds number. When compared with the results from the experiments and some other prediction models, the present model could give good estimations on the vibration amplitudes and frequencies of the VIV both for elastically-mounted rigid and long flexible cylinders. The present model considering the influence of the Reynolds number could generally provide better results than that neglecting the effect of the Reynolds number.
基金supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2006AA09Z350)the National Natural Science Foundation of China(Grant No.10702073)the Knowledge Innovation Program of Chinese Academy of Sciences(Grant No.KJCX2-YW-L02)
文摘This article proposes a new wake oscillator model for vortex induced vibrations of an elastically supported rigid circular cylinder in a uniform current. The near wake dynamics related with the fluctuating nature of vortex shedding is modeled based on the classical van der Pol equation, combined with the equation for the oscillatory motion of the body. An appropriate approach is developed to estimate the empirical parameters in the wake oscillator model. The present predicted results are compared to the experimental data and previous wake oscillator model results. Good agreement with experimental results is found.
基金supported by the High Technology Research and Development Program of China (863 Pro-gram, Grant No.2010AA09Z303)the Key Project of National Natural Science Foundation of China (Grant No.50739004)
文摘The fluctuating furces of the fluid exerted on the top terrsioned riser ('FIR) in the in-line and cross-flow directions are both modeled by van del Pol wake oscillator model and the nonlinear coupled dynamics of the in-line and cross-flow vortex-induced vibrations (VIV) of the riser are analyzed in time domain in this papar. The numencal shnulation results of the riser's in-line and cross-flow displacements and curvatures are compared with experimental measurements and the comparison shows the validity of this method in modeling some main features of the riser's VIV. Finally, the effects of the riser's top tensions and internal flow velocities on the coupled vibrations of the riser are investigated.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(SRFDP,Grant No. 20100032120047)State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University (Grant No.1104)the National Natural Science Foundation of China (Grant No. 51209161)
文摘The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model. It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51861130358 and 51609109)the State Key Laboratory of Ocean Engineering,China(Shanghai Jiao Tong University)(Grant No.1905)the Newton Advanced Fellowships of the Royal Society,and the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX20_3153).
文摘An improved three-dimensional(3D)time-domain couple model is established in this paper to simulate the bidirectional vortex-induced vibration(VIV)of a deepwater steep wave riser(SWR)subjected to oblique currents.In this model,the nonlinear motion equations of the riser are established in the global coordinate system based on the slender rod theory with the finite element method.Van der Pol equations are used to describe the lift forces induced by the x-and y-direction current components,respectively.The coupled equations at each time step are solved by a Newmark-βiterative scheme for the SWR VIV.The present model is verified by comparison with the published experimental results for a top-tension riser.Then,a series of simulations are executed to determine the influences of the oblique angle/velocity of the current,different top-end positions and the length of the buoyancy segment on the VIV displacement,oscillating frequency as well as hydrodynamic coefficients of the SWR.The results demonstrate that there exists a coupled resonant VIV corresponding to x-direction and y-direction,respectively.However,the effective frequency is almost identical between the vibrations at the hang-off segment along x and y directions.The addition of the buoyancy modules in the middle of the SWR has a beneficial impact on the lift force of three segments and simultaneously limits the VIV response,especially at the decline segment and the hang-off segments.Additionally,the incident current direction significantly affects the motion trajectory of the SWR which mainly includes the fusiform and rectangle shapes.