Most warranty cost models based on preventive maintenance operations are assumed that products improve at each preventive maintenance (PM) operation and the failure rate is reduced to the failure rate of new product...Most warranty cost models based on preventive maintenance operations are assumed that products improve at each preventive maintenance (PM) operation and the failure rate is reduced to the failure rate of new products or to some specified level. To make warranty cost models more suitable to real operations, a modeling method of the PM warranty cost was proposed with the situation where each PM operation slowed the rate of product degradation. A warranty cost model was built on PM operations. On the basis of the cost model, both without and with reliability limit PM warranty policy, algorithms were presented to derive the optimal PM number and the optimal PM interval with an objective of minimizing expected total warranty cost over a t'mite warranty period. Finally, to demonstrate the feasibility of the presented modeling method, Weibuil distribution cases were tested by numerical simulations. The simulation results indicate that the proposed modeling method is feasible and valid for resolving the optimal solution of the product warranty cost.展开更多
During extended warranty(EW)period,maintenance events play a key role in controlling the product systems within normal operations.However,the modelling of failure process and maintenance optimization is complicated ow...During extended warranty(EW)period,maintenance events play a key role in controlling the product systems within normal operations.However,the modelling of failure process and maintenance optimization is complicated owing to the complex features of the product system,namely,components of the multi-component system are interdependent with each other in some form.For the purpose of optimizing the EW pricing decision of the multi-component system scientifically and rationally,taking the series multi-component system with economic dependence sold with EW policy as a research object,this paper optimizes the imperfect preventive maintenance(PM)strategy from the standpoint of EW cost.Taking into consideration adjusting the PM moments of the components in the system,a group maintenance model is developed,in which the system is repaired preventively in accordance with a specified PM base interval.In order to compare with the system EW cost before group maintenance,the system EW cost model before group maintenance is developed.Numerical example demonstrates that offering group maintenance programs can reduce EW cost of the system to a great extent,thereby reducing the EW price,which proves to be a win-win strategy to manufacturers and users.展开更多
Renewing warranty can provide customers with better service,and thus help manufacturers to gain market opportunities.In engineering practice,the cost for replacement is usually higher than the cost for maintenance,hen...Renewing warranty can provide customers with better service,and thus help manufacturers to gain market opportunities.In engineering practice,the cost for replacement is usually higher than the cost for maintenance,hence manufacturers often face huge challenge to reduce the warranty service cost.With consideration of the warranty deadline,we propose a two-stage optimization model for renewing warranty.In the first stage,a renewing warranty with deadline(RWD)policy is implemented,where the deadline represents the cumulative uptime threshold.When the cumulative uptime exceeds the deadline,the product will be minimally repaired and kept to the residual warranty period.When RWD is expired,the replacement warranty with limited repairs(RWLR)policy is applied.Under the free replacement and pro-rata warranty policy,the corresponding two-stage cost optimization model is established from the manufacturer’s perspective,the aim is to minimize the cost rate and obtain the optimal warranty period.A numerical example is provided to illustrate the validity of the proposed model,and the sensitivity analysis is also carried out.展开更多
To increase customers'satisfaction and promote product's competitiveness,a customized extended warranty(EW)policy is proposed,where the diversities in both the usage rate and purchase date are considered.The m...To increase customers'satisfaction and promote product's competitiveness,a customized extended warranty(EW)policy is proposed,where the diversities in both the usage rate and purchase date are considered.The marginal approach is applied to describe the product's two-dimensional failure in terms of age and usage,respectively.Moreover,minimal repair is adopted to restore the failure,and the virtual age method is applied to depict the effect of preventive maintenance(PM).On this basis,an optimization model is established to minimize the maintenance cost and warranty cost from the manufacturer's view,and multiple factors are taken into account,including the PM's intensity and its period,and EW's interval,etc.A numerical case study is provided to illustrate the effectiveness of the proposed approach.The results show that by considering the product's usage rate and the purchasing date of EW,the number of failures as well as the cost of maintenance and warranty can be reduced effectively.展开更多
In the one-dimensional renewing warranty period,the quality of the spares for product is likely to be improved during the warranty period.Therefore,upgrading maintenance becomes more and more common.Then the manufactu...In the one-dimensional renewing warranty period,the quality of the spares for product is likely to be improved during the warranty period.Therefore,upgrading maintenance becomes more and more common.Then the manufacturers(customers) may have to decide whether or not to provide(buy) the warranty considering upgrading maintenance.This paper presents a mathematical model considering upgrading maintenance for products with multiple failure modes.Upgrading maintenance is taken into account with the assumption that the warranted item is upgraded one time during the warranty cycle.The upgrading maintenance is carried out,when the corrective maintenance is taken place.After upgrading maintenance,the high-quality spares are used to replace the failed item.In the numerical example,the results of the models are calculated.Monte Carlo simulation results are compared with the analytical results to demonstrate the correctness and efficiency of the proposed models considering upgrading maintenance.展开更多
基金National Natural Science Foundation of China(No.60574054No.70771065No.70671065)
文摘Most warranty cost models based on preventive maintenance operations are assumed that products improve at each preventive maintenance (PM) operation and the failure rate is reduced to the failure rate of new products or to some specified level. To make warranty cost models more suitable to real operations, a modeling method of the PM warranty cost was proposed with the situation where each PM operation slowed the rate of product degradation. A warranty cost model was built on PM operations. On the basis of the cost model, both without and with reliability limit PM warranty policy, algorithms were presented to derive the optimal PM number and the optimal PM interval with an objective of minimizing expected total warranty cost over a t'mite warranty period. Finally, to demonstrate the feasibility of the presented modeling method, Weibuil distribution cases were tested by numerical simulations. The simulation results indicate that the proposed modeling method is feasible and valid for resolving the optimal solution of the product warranty cost.
基金supported by the National Natural Science Foundation of China(71871219).
文摘During extended warranty(EW)period,maintenance events play a key role in controlling the product systems within normal operations.However,the modelling of failure process and maintenance optimization is complicated owing to the complex features of the product system,namely,components of the multi-component system are interdependent with each other in some form.For the purpose of optimizing the EW pricing decision of the multi-component system scientifically and rationally,taking the series multi-component system with economic dependence sold with EW policy as a research object,this paper optimizes the imperfect preventive maintenance(PM)strategy from the standpoint of EW cost.Taking into consideration adjusting the PM moments of the components in the system,a group maintenance model is developed,in which the system is repaired preventively in accordance with a specified PM base interval.In order to compare with the system EW cost before group maintenance,the system EW cost model before group maintenance is developed.Numerical example demonstrates that offering group maintenance programs can reduce EW cost of the system to a great extent,thereby reducing the EW price,which proves to be a win-win strategy to manufacturers and users.
基金Project(71671035) supported by the National Natural Science Foundation of China
文摘Renewing warranty can provide customers with better service,and thus help manufacturers to gain market opportunities.In engineering practice,the cost for replacement is usually higher than the cost for maintenance,hence manufacturers often face huge challenge to reduce the warranty service cost.With consideration of the warranty deadline,we propose a two-stage optimization model for renewing warranty.In the first stage,a renewing warranty with deadline(RWD)policy is implemented,where the deadline represents the cumulative uptime threshold.When the cumulative uptime exceeds the deadline,the product will be minimally repaired and kept to the residual warranty period.When RWD is expired,the replacement warranty with limited repairs(RWLR)policy is applied.Under the free replacement and pro-rata warranty policy,the corresponding two-stage cost optimization model is established from the manufacturer’s perspective,the aim is to minimize the cost rate and obtain the optimal warranty period.A numerical example is provided to illustrate the validity of the proposed model,and the sensitivity analysis is also carried out.
基金The National Natural Science Foundation of China(No.71671035)the Project of 2018 Intelligent Manufacturing Comprehensive Standard of Ministry of Industry and Information Technology of Chinathe Open Fund of Jiangsu Wind Power Engineering Technology Center of China(No.ZK19-03-03)。
文摘To increase customers'satisfaction and promote product's competitiveness,a customized extended warranty(EW)policy is proposed,where the diversities in both the usage rate and purchase date are considered.The marginal approach is applied to describe the product's two-dimensional failure in terms of age and usage,respectively.Moreover,minimal repair is adopted to restore the failure,and the virtual age method is applied to depict the effect of preventive maintenance(PM).On this basis,an optimization model is established to minimize the maintenance cost and warranty cost from the manufacturer's view,and multiple factors are taken into account,including the PM's intensity and its period,and EW's interval,etc.A numerical case study is provided to illustrate the effectiveness of the proposed approach.The results show that by considering the product's usage rate and the purchasing date of EW,the number of failures as well as the cost of maintenance and warranty can be reduced effectively.
基金the National Society Science Foundation of China(No.14GJ003-135)the National Natural Science Foundation of China(No.71401173)
文摘In the one-dimensional renewing warranty period,the quality of the spares for product is likely to be improved during the warranty period.Therefore,upgrading maintenance becomes more and more common.Then the manufacturers(customers) may have to decide whether or not to provide(buy) the warranty considering upgrading maintenance.This paper presents a mathematical model considering upgrading maintenance for products with multiple failure modes.Upgrading maintenance is taken into account with the assumption that the warranted item is upgraded one time during the warranty cycle.The upgrading maintenance is carried out,when the corrective maintenance is taken place.After upgrading maintenance,the high-quality spares are used to replace the failed item.In the numerical example,the results of the models are calculated.Monte Carlo simulation results are compared with the analytical results to demonstrate the correctness and efficiency of the proposed models considering upgrading maintenance.