To address the issue of horizontal well production affected by the distribution of perforation density in the wellbore,a numerical model for simulating two-phase flow in a horizontal well is established under two perf...To address the issue of horizontal well production affected by the distribution of perforation density in the wellbore,a numerical model for simulating two-phase flow in a horizontal well is established under two perforation density distribution conditions(i.e.increasing the perforation density at inlet and outlet sections respectively).The simulation results are compared with experimental results to verify the reliability of the numerical simulation method.The behaviors of the total pressure drop,superficial velocity of air-water two-phase flow,void fraction,liquid film thickness,air production and liquid production that occur with various flow patterns are investigated under two perforation density distribution conditions based on the numerical model.The total pressure drop,superficial velocity of the mixture and void fraction increase with the air flow rate when the water flow rate is constant.The liquid film thickness decreases when the air flow rate increases.The liquid and air productions increase when the perforation density increases at the inlet section compared with increasing the perforation density at the outlet section of the perforated horizontal wellbore.It is noted that the air production increases with the air flow rate.Liquid production increases with the bubble flow and begins to decrease at the transition point of the slug-stratified flow,then increases through the stratified wave flow.The normalized liquid flux is higher when the perforation density increases at the inlet section,and increases with the radial air flow rate.展开更多
In order to accurately predict the productivity of herringbone multilateral well,a new productivity prediction model was founded.And based on this model,orthogonal test and multiple factor variance analysis were appli...In order to accurately predict the productivity of herringbone multilateral well,a new productivity prediction model was founded.And based on this model,orthogonal test and multiple factor variance analysis were applied to study optimization design of herringbone multilateral well.According to the characteristics of herringbone multilateral well,by using pressure superposition and mirror image reflection theory,the coupled model of herringbone multilateral well was developed on the basis of a three-dimensional pseudo-pressure distribution model for horizontal wells.The model was formulated in consideration of friction loss,acceleration loss of the wellbore and mixed loss at the confluence of main wellbore and branched one.After mathematical simulation on productivity of the herringbone multilateral well with the coupled model,the effects of well configuration on productivity were analyzed.The results show that lateral number is the most important factor,length of main wellbore and length of branched wellbore are the secondary ones,angle between main and branched one has the least influence.展开更多
基金the financial support from the Ministry of Education Malaysia under the Fundamental Research Grant Scheme(FRGS)scheme(20180110FRGS)。
文摘To address the issue of horizontal well production affected by the distribution of perforation density in the wellbore,a numerical model for simulating two-phase flow in a horizontal well is established under two perforation density distribution conditions(i.e.increasing the perforation density at inlet and outlet sections respectively).The simulation results are compared with experimental results to verify the reliability of the numerical simulation method.The behaviors of the total pressure drop,superficial velocity of air-water two-phase flow,void fraction,liquid film thickness,air production and liquid production that occur with various flow patterns are investigated under two perforation density distribution conditions based on the numerical model.The total pressure drop,superficial velocity of the mixture and void fraction increase with the air flow rate when the water flow rate is constant.The liquid film thickness decreases when the air flow rate increases.The liquid and air productions increase when the perforation density increases at the inlet section compared with increasing the perforation density at the outlet section of the perforated horizontal wellbore.It is noted that the air production increases with the air flow rate.Liquid production increases with the bubble flow and begins to decrease at the transition point of the slug-stratified flow,then increases through the stratified wave flow.The normalized liquid flux is higher when the perforation density increases at the inlet section,and increases with the radial air flow rate.
基金Project(12521044) supported by Scientific and Technological Research Program of Heilongjiang Provincial Education Department,China
文摘In order to accurately predict the productivity of herringbone multilateral well,a new productivity prediction model was founded.And based on this model,orthogonal test and multiple factor variance analysis were applied to study optimization design of herringbone multilateral well.According to the characteristics of herringbone multilateral well,by using pressure superposition and mirror image reflection theory,the coupled model of herringbone multilateral well was developed on the basis of a three-dimensional pseudo-pressure distribution model for horizontal wells.The model was formulated in consideration of friction loss,acceleration loss of the wellbore and mixed loss at the confluence of main wellbore and branched one.After mathematical simulation on productivity of the herringbone multilateral well with the coupled model,the effects of well configuration on productivity were analyzed.The results show that lateral number is the most important factor,length of main wellbore and length of branched wellbore are the secondary ones,angle between main and branched one has the least influence.