Motion compensation is a key step of inverse synthetic aperture radar (ISAR) imaging. In this paper, the average absolute error measure (AAEM) is proposed for BAR translational motion compensation. Based on the AAEM,...Motion compensation is a key step of inverse synthetic aperture radar (ISAR) imaging. In this paper, the average absolute error measure (AAEM) is proposed for BAR translational motion compensation. Based on the AAEM, a technique for improving stepped-frequency IS AR imagery is presented. Image improvement is achieved in the frequency domain where the echo phase can be adjusted to compensate for translational motion. With help o f a search algorithm, the garget' s motion parameters which reduce AAEM to a minimum are determined. The signer-Vile distribution is used to find the initial values for a search algorithm. Based on AAEM, one can efficiently focus the image of the target. In the simulation, the target is assumed to fly in straight path and is illuminated by an X-band ground-based stationary stepped-frequency ISAR. The resulted image from simulation radal data is obtained. comparing the resulted image with that of the typical compensation method, the effectiveness of the proposed AAEM is verified.展开更多
In this paper, a new mesh based algorithm is applied for motion estimation and compensation in the wavelet domain. The first major contribution of this work is the introduction of a new active mesh based method for mo...In this paper, a new mesh based algorithm is applied for motion estimation and compensation in the wavelet domain. The first major contribution of this work is the introduction of a new active mesh based method for motion estimation and compensation. The proposed algorithm is based on the mesh energy minimization with novel sets of energy functions. The proposed energy functions have appropriate features, which improve the accuracy of motion estimation and compensation algorithm. We employ the proposed motion estimation algorithm in two different manners for video compression. In the first approach, the proposed algorithm is employed for motion estimation of consecutive frames. In the second approach, the algorithm is applied for motion estimation and compensation in the wavelet sub-bands. The experimental results reveal that the incorporation of active mesh based motion-compensated temporal filtering into wavelet sub-bands significantly improves the distortion performance rate of the video compression. We also use a new wavelet coder for the coding of the 3D volume of coefficients based on the retained energy criteria. This coder gives the maximum retained energy in all sub-bands. The proposed algorithm was tested with some video sequences and the results showed that the use of the proposed active mesh method for motion compensation and its implementation in sub-bands yields significant improvement in PSNR performance.展开更多
Fatigue cracks that develop in civil infrastructure such as steel bridges due to repetitive loads pose a major threat to structural integrity.Despite being the most common practice for fatigue crack detection,human vi...Fatigue cracks that develop in civil infrastructure such as steel bridges due to repetitive loads pose a major threat to structural integrity.Despite being the most common practice for fatigue crack detection,human visual inspection is known to be labor intensive,time-consuming,and prone to error.In this study,a computer vision-based fatigue crack detection approach using a short video recorded under live loads by a moving consumer-grade camera is presented.The method detects fatigue crack by tracking surface motion and identifies the differential motion pattern caused by opening and closing of the fatigue crack.However,the global motion introduced by a moving camera in the recorded video is typically far greater than the actual motion associated with fatigue crack opening/closing,leading to false detection results.To overcome the challenge,global motion compensation(GMC)techniques are introduced to compensate for camera-induced movement.In particular,hierarchical model-based motion estimation is adopted for 2D videos with simple geometry and a new method is developed by extending the bundled camera paths approach for 3D videos with complex geometry.The proposed methodology is validated using two laboratory test setups for both in-plane and out-of-plane fatigue cracks.The results confirm the importance of motion compensation for both 2D and 3D videos and demonstrate the effectiveness of the proposed GMC methods as well as the subsequent crack detection algorithm.展开更多
The article hypothesizes that DE and DM (UCM) are a “Form of Motion of a Special Nature”, where “Form of Motion” means “Eternal Motion” as the power of dynamics of different levels and varying degrees of self-su...The article hypothesizes that DE and DM (UCM) are a “Form of Motion of a Special Nature”, where “Form of Motion” means “Eternal Motion” as the power of dynamics of different levels and varying degrees of self-sufficiency, and by “Special Nature”, gravitational and two other properties of matter, “tied” to the “Eternal Movement” and completely dependent on it. Carriers of key properties of a “Special Nature” have been established: “0”-DE particles and “3”-DM particles (UDM). The unity of their inherent “motionally-gravitational” properties and the peculiarity of the relationship between “motion” and “gravity” are revealed: the higher the intensity of “Eternal Motion”, the stronger the gravitational properties of matter are manifested (and vice versa). The relationship of “time” with the “vibration frequency” and the “mass” of photons with the “degree of bonding and deformation properties of the field” is shown. The maximum level of gravity has been determined, which allows Nature to successfully create the Universe: such a landmark is the proximity to the property of the Primary Source—the “pure graviton” of the OSP space, the most powerful “motionally-gravitational” particle of the Universe. The reasons for the emergence of such an identity of the gravitational properties of particles with the indicators of a “pure graviton” are established: for “0”-DE particles, this is the acquisition of the function of “freedom of movement”;for “3”-DM particles (UDM), the creation of a special structure—a “double field” (“Main” and “Small”). The presence in the “double field” of specific “tools” for the creation of the worlds of the Universe—gravitational “waves” gives rise to impulses (shocks) of varying intensity and shape. A list of functions performed by “waves” in the “Main” and “Small” fields has been compiled. The specific conditions for the formation of “UDM Streams”, their transformation into a “Vortex” and, under the influence of a powerful Initial Impulse (push), sending them to the “place” of the creation of galaxies, are shown. It is suggested that there is a “Cycle of Matter in Nature” in the closed structure of our Universe due to the “work” of “waves” and the functioning of special “factories” in the form of exotic space objects—Black holes.展开更多
The machining precision not only depends on accurate mechanical structure but also depends on motion compensation method. If manufacturing precision of mechanical structure cannot be improved, the motion compensation ...The machining precision not only depends on accurate mechanical structure but also depends on motion compensation method. If manufacturing precision of mechanical structure cannot be improved, the motion compensation is a reasonable way to improve motion precision. A motion compensation method based on neural network of radial basis function(RBF) was presented in this paper. It utilized the infinite approximation advantage of RBF neural network to fit the motion error curve. The best hidden neural quantity was optimized by training the motion error data and calculating the total sum of squares. The best curve coefficient matrix was got and used to calculate motion compensation values. The experiments showed that the motion errors could be reduced obviously by utilizing the method in this paper.展开更多
Motion compensation de interlacing is expected to be better than linear techniques; but all the block based motion compensation de interlacing methods cause block artifacts. The algorithm proposed in this paper is con...Motion compensation de interlacing is expected to be better than linear techniques; but all the block based motion compensation de interlacing methods cause block artifacts. The algorithm proposed in this paper is concerned with reducing the deficiency of motion compensated interpolation by using adaptive hybrid de interlacing methods. A spatio temporal tensor based approach is used to get more accurate motion field for de interlacing. Motion vector is assigned for each position with pixel precision; the block artifact is reduced significantly. To deal with the artifacts introduced by motion compensation when the motion estimation is incorrect, linear techniques are considered by adaptive weighting. Furthermore, directional filter is adapted to preserve details and the edge discontinuity could be eliminated greatly. Our approach is robust to incorrect motion vector estimation.展开更多
After analyzing the characteristics of airborne SAR motion deviation in detail, a new realization method for airborne SAR motion compensation based on two-dimensional division processing is described. By combining the...After analyzing the characteristics of airborne SAR motion deviation in detail, a new realization method for airborne SAR motion compensation based on two-dimensional division processing is described. By combining the division of local tracks in azimuth direction and the division of sub-mapping strips in range direction, the motion deviation will be compensated accurately. Furthermore, both theoretic analysis and simulation result show that by using this method the problems of motion compensation under complex condition with large motion deviation and large mapping strip width can be resolved well.展开更多
With regard to the phase compensation in inverse synthetic aperture radar (ISAR),the modified Doppler centroid tracking (MDCT) method is developed which applies the phase gradient autofocus (PGA) algorithm developed b...With regard to the phase compensation in inverse synthetic aperture radar (ISAR),the modified Doppler centroid tracking (MDCT) method is developed which applies the phase gradient autofocus (PGA) algorithm developed by Wahl[1]to improve the Doppler centroid tracking (DCT) method[2].When the phase compensation is performed,the proposed approach smartly eliminates the effect of the rotational phase component (RPC) on the estimation of the translational phase component (TPC) by circular shifting,windowing and iteration steps. After several iterations,the maximum likelihood estimation and compensation of the TPC of the target can be realized more effectively.The processing results of live data show that the proposed method can improve the imaging quality of ISAR significantly.展开更多
Motion compensation is a key step for inverse synthetic aperture radar (ISAR) imaging. Many algorithms have been proposed. The rank one phase estimation (ROPE) algorithm is a good estimator for phase error widely used...Motion compensation is a key step for inverse synthetic aperture radar (ISAR) imaging. Many algorithms have been proposed. The rank one phase estimation (ROPE) algorithm is a good estimator for phase error widely used in SAR. The ROPE algorithm is used in ISAR phase compensation and the concrete implementation steps are presented. Subsequently, the performance of ROPE is analyzed. For ISAR data that fit the ROPE algorithm model, an excellent compensation effect can be obtained with high computation efficiency. Finally, ISAR real data are processed with ROPE and its imaging result is compared with that obtained by the modified Doppler centroid tracking (MDCT) method, which is a robust and good estimator in ISAR phase compensation.展开更多
To enhance the image motion compensation accuracy of off-axis three-mirror anastigmatic( TMA)three-line array aerospace mapping cameras,a new method of image motion velocity field modeling is proposed in this paper. F...To enhance the image motion compensation accuracy of off-axis three-mirror anastigmatic( TMA)three-line array aerospace mapping cameras,a new method of image motion velocity field modeling is proposed in this paper. Firstly,based on the imaging principle of mapping cameras,an analytical expression of image motion velocity of off-axis TMA three-line array aerospace mapping cameras is deduced from different coordinate systems we established and the attitude dynamics principle. Then,the case of a three-line array mapping camera is studied,in which the simulation of the focal plane image motion velocity fields of the forward-view camera,the nadir-view camera and the backward-view camera are carried out,and the optimization schemes for image motion velocity matching and drift angle matching are formulated according the simulation results. Finally,this method is verified with a dynamic imaging experimental system. The results are indicative of that when image motion compensation for nadir-view camera is conducted using the proposed image motion velocity field model,the line pair of target images at Nyquist frequency is clear and distinguishable. Under the constraint that modulation transfer function( MTF) reduces by 5%,when the horizontal frequencies of the forward-view camera and the backward-view camera are adjusted uniformly according to the proposed image motion velocity matching scheme,the time delay integration( TDI) stages reach 6 at most. When the TDI stages are more than 6,the three groups of camera will independently undergo horizontal frequency adjustment. However, when the proposed drift angle matching scheme is adopted for uniform drift angle adjustment,the number of TDI stages will not exceed 81. The experimental results have demonstrated the validity and accuracy of the proposed image motion velocity field model and matching optimization scheme,providing reliable basis for on-orbit image motion compensation of aerospace mapping cameras.展开更多
In this paper we present a motion compensation (MC) design for the newest Audio Video coding Standard (AVS) of China. Because of compression-efficient techniques of variable block size (VBS) and sub-pixel interpolatio...In this paper we present a motion compensation (MC) design for the newest Audio Video coding Standard (AVS) of China. Because of compression-efficient techniques of variable block size (VBS) and sub-pixel interpolation, intensive pixel calculation and huge memory access are required. We propose a parallel serial filtering mixed luma interpolation data flow and a three-stage multiplication free chroma interpolation scheme. Compared to the conventional designs, the integrated architecture supports about 2.7 times filtering throughput. The proposed MC design utilizes Vertical Z processing order for reference data re-use and saves up to 30% memory bandwidth. The whole design requires 44.3k gates when synthesized at 108 MHz clock frequency using 0.18-μm CMOS technology and can support up to 1920×1088@30 fps AVS HDTV video decoding.展开更多
A discrete model is set up for High Resolution Range Profile (HRRP) of an extended target and the model of echo from an extended target for a Stepped Chirp Radar (SCR) is proposed. The effect of target motion on a ran...A discrete model is set up for High Resolution Range Profile (HRRP) of an extended target and the model of echo from an extended target for a Stepped Chirp Radar (SCR) is proposed. The effect of target motion on a range profile is thoroughly analyzed, and based on which precision re- quirement is developed for motion compensation. By studying the time domain correlation and the rule based on the least burst error, a motion compensation algorithm which satisfies the project requirement is presented, and the cyber-emulation confirms the conclusion. At last the processor is designed by using DSP devices to realize motion compensation and target recognition.展开更多
MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with...MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with sacrifice of coding efficiency. An one-loop FGS structure is presented based on motion compensation (MC + FGS) to improve the coding efficiency of base FGS. Then it describes and discusses the hybrid spatial-SNR FGS (FGSS) structure that extends SNR scalability of FGS to spatial scalability (spatio-SNR scalability). FGSS structure inherent the low coding efficiency of FGS structure. Combining MC + FGS structure with FGSS structure, a structure of MC + FGSS structure is obtained which acquires both structures' advantages and counteracts both structures' defects. Experimental results prove the MC+ FGSS structure not only obtains fine granular spatio-SNR scalability, but also achieves high coding efficiency.展开更多
The maximum predicting error of the commonly used passive truncated mooring system method may reach 30%due to the difference of dynamic characteristics between the truncated and full-depth mooring line.In this paper,t...The maximum predicting error of the commonly used passive truncated mooring system method may reach 30%due to the difference of dynamic characteristics between the truncated and full-depth mooring line.In this paper,the experimental strategy called three-parameter(displacement,velocity and acceleration)active control method at the truncated point of mooring line is established to implement the synchronous equivalent of motion and force,and the realization of active truncated mooring system for model test is studied theoretically.The influences of threeparameter and one-parameter(displacement)active control strategies on the compensation effects are compared by numerical study.The results show that the established three-parameter active control method can feasibly realize the static and dynamic equivalent of truncated and full-depth mooring system,laying a good foundation for the following physical model test of active truncated mooring system.展开更多
The application of the vertical hoisting jack and wave motion compensation techniques to the salvage of an ancient sunken boat is introduced. The boat is wooden, loaded with cultural relics. It has been immersed at th...The application of the vertical hoisting jack and wave motion compensation techniques to the salvage of an ancient sunken boat is introduced. The boat is wooden, loaded with cultural relics. It has been immersed at the bottom of the South China Sea for more than 800 years. In order to protect the structure of the boat and the cultural relics inside to the largest extent, an open caisson is used to hold the sunken beat and the silts around before they are raised from the seabed all together as a whole. In the paper, first, the seakeeping model test of the system of the salvage barge and the open caisson is done to determine some important wave response parameters. And then a further experimental study of the ap- plication of the vertical hoisting jack and wave motion compensation scheme to the salvage of the sunken boat is carried out. In the model tests, the techniques of the integrative mechanic-electronic-hydraulic control, wave motion forecast and wave motion compensation are used to minimize the heave motion of the open caisson. The results of the model tests show that the heave motion of the open caisson can be reduced effectively by the use of the present method.展开更多
Inverse synthetic aperture radar(ISAR)imaging of the target with the non-rigid body is very important in the field of radar signal processing.In this paper,a motion compensation method combined with the preprocessing ...Inverse synthetic aperture radar(ISAR)imaging of the target with the non-rigid body is very important in the field of radar signal processing.In this paper,a motion compensation method combined with the preprocessing and global technique is proposed to reduce the influence of micro-motion components in the fast time domain,and the micro-Doppler(m-D)signal in the slow time domain is separated by the improved complex-valued empirical-mode decomposition(CEMD)algorithm,which makes the m-D signal more effectively distinguishable from the signal for the main body by translating the target to the Doppler center.Then,a better focused ISAR image of the target with the non-rigid body can be obtained consequently.Results of the simulated and raw data demonstrate the effectiveness of the algorithm.展开更多
Estimation precision of Displaced Phase Center Algorithm(DPCA) is affected by the number of displaced phase center pairs,the bandwidth of transmitting signal and many other factors.Detailed analysis is made on DPCA...Estimation precision of Displaced Phase Center Algorithm(DPCA) is affected by the number of displaced phase center pairs,the bandwidth of transmitting signal and many other factors.Detailed analysis is made on DPCA's estimation precision.Analysis results show that the directional vector estimation precision of DPCA is low,which will produce accumulating errors when phase cen-ters' track is estimated.Because of this reason,DPCA suffers from accumulating errors seriously.To overcome this problem,a method combining DPCA with Sub Aperture Image Correlation(SAIC) is presented.Large synthetic aperture is divided into sub-apertures.Micro errors in sub-aperture are estimated by DPCA and compensated to raw echo data.Bulk errors between sub-apertures are esti-mated by SAIC and compensated directly to sub-aperture images.After that,sub-aperture images are directly used to generate ultimate SAS image.The method is applied to the lake-trial dataset of a 20 kHz SAS prototype system.Results show the method can successfully remove the accumulating error and produce a better SAS image.展开更多
Stochastic processes such as diffusion can be analyzed by means of a partial differential equation of the Fokker-Planck type (FPE), which yields a transition probability density, or by a stochastic differential equati...Stochastic processes such as diffusion can be analyzed by means of a partial differential equation of the Fokker-Planck type (FPE), which yields a transition probability density, or by a stochastic differential equation of the Langevin type (LE), which yields the time evolution of a statistical process variable. Provided the stochastic process is continuous and certain boundary conditions are met, the two approaches yield equivalent information. However, Brownian motion of radioactively decaying particles is not a continuous process because the Brownian trajectories abruptly terminate when the particle decays. Recent analysis of the Brownian motion of decaying particles by both approaches has led to different mean-square displacements. In this paper, we demonstrate the complete equivalence of the two approaches by 1) showing quantitatively and operationally how the probability densities and statistical moments predicted by the FPE and LE relate to one another, 2) verifying that both approaches lead to identical statistical moments at all orders, and 3) confirming that the analytical solution to the FPE accurately describes the Brownian trajectories obtained by Monte Carlo simulations based on the LE. The analysis in this paper addresses both the spatial distribution of the particles (i.e. the question of displacement as a function of diffusion time) and the temporal distribution (i.e. the question of first-passage time to fixed absorbing boundaries).展开更多
Synthetic aperture radar(SAR) is usually sensitive to trajectory deviations that cause serious motion error in the recorded data. In this paper, a coherent range-dependent mapdrift(CRDMD) algorithm is developed to acc...Synthetic aperture radar(SAR) is usually sensitive to trajectory deviations that cause serious motion error in the recorded data. In this paper, a coherent range-dependent mapdrift(CRDMD) algorithm is developed to accommodate the range-variant motion errors. By utilizing the algorithm as an estimate core, robust motion compensation strategy is proposed for unmanned aerial vehicle(UAV) SAR imagery. CRDMD outperforms the conventional map-drift algorithms in both accuracy and efficiency. Real data experiments show that the proposed approach is appropriate for precise motion compensation for UAV SAR.展开更多
An adaptive de-interlacing algorithm based on motion compensation is presented. It consists of the detection of motion blocks, the adaptive motion estimation with Kalman filtering, and the motion compensation for moti...An adaptive de-interlacing algorithm based on motion compensation is presented. It consists of the detection of motion blocks, the adaptive motion estimation with Kalman filtering, and the motion compensation for motion blocks and field repetition for static blocks. The detection of motion blocks can accurately identify the motion blocks by using successive 4-field images. The motion estimation module with Kalman filtering searches motion vectors only for motion blocks, and the search model is adaptive to motion velocity and acceleration. Two de-interlacing methods are adopted to satisfy the different requirements of motion blocks and static blocks. Compared with full search algorithm, the proposed algorithm greatly reduces the computational amount while keeping the performance approximately.展开更多
文摘Motion compensation is a key step of inverse synthetic aperture radar (ISAR) imaging. In this paper, the average absolute error measure (AAEM) is proposed for BAR translational motion compensation. Based on the AAEM, a technique for improving stepped-frequency IS AR imagery is presented. Image improvement is achieved in the frequency domain where the echo phase can be adjusted to compensate for translational motion. With help o f a search algorithm, the garget' s motion parameters which reduce AAEM to a minimum are determined. The signer-Vile distribution is used to find the initial values for a search algorithm. Based on AAEM, one can efficiently focus the image of the target. In the simulation, the target is assumed to fly in straight path and is illuminated by an X-band ground-based stationary stepped-frequency ISAR. The resulted image from simulation radal data is obtained. comparing the resulted image with that of the typical compensation method, the effectiveness of the proposed AAEM is verified.
文摘In this paper, a new mesh based algorithm is applied for motion estimation and compensation in the wavelet domain. The first major contribution of this work is the introduction of a new active mesh based method for motion estimation and compensation. The proposed algorithm is based on the mesh energy minimization with novel sets of energy functions. The proposed energy functions have appropriate features, which improve the accuracy of motion estimation and compensation algorithm. We employ the proposed motion estimation algorithm in two different manners for video compression. In the first approach, the proposed algorithm is employed for motion estimation of consecutive frames. In the second approach, the algorithm is applied for motion estimation and compensation in the wavelet sub-bands. The experimental results reveal that the incorporation of active mesh based motion-compensated temporal filtering into wavelet sub-bands significantly improves the distortion performance rate of the video compression. We also use a new wavelet coder for the coding of the 3D volume of coefficients based on the retained energy criteria. This coder gives the maximum retained energy in all sub-bands. The proposed algorithm was tested with some video sequences and the results showed that the use of the proposed active mesh method for motion compensation and its implementation in sub-bands yields significant improvement in PSNR performance.
基金NCHRP Project,IDEA 223:Fatigue Crack Inspection using Computer Vision and Augmented Reality。
文摘Fatigue cracks that develop in civil infrastructure such as steel bridges due to repetitive loads pose a major threat to structural integrity.Despite being the most common practice for fatigue crack detection,human visual inspection is known to be labor intensive,time-consuming,and prone to error.In this study,a computer vision-based fatigue crack detection approach using a short video recorded under live loads by a moving consumer-grade camera is presented.The method detects fatigue crack by tracking surface motion and identifies the differential motion pattern caused by opening and closing of the fatigue crack.However,the global motion introduced by a moving camera in the recorded video is typically far greater than the actual motion associated with fatigue crack opening/closing,leading to false detection results.To overcome the challenge,global motion compensation(GMC)techniques are introduced to compensate for camera-induced movement.In particular,hierarchical model-based motion estimation is adopted for 2D videos with simple geometry and a new method is developed by extending the bundled camera paths approach for 3D videos with complex geometry.The proposed methodology is validated using two laboratory test setups for both in-plane and out-of-plane fatigue cracks.The results confirm the importance of motion compensation for both 2D and 3D videos and demonstrate the effectiveness of the proposed GMC methods as well as the subsequent crack detection algorithm.
文摘The article hypothesizes that DE and DM (UCM) are a “Form of Motion of a Special Nature”, where “Form of Motion” means “Eternal Motion” as the power of dynamics of different levels and varying degrees of self-sufficiency, and by “Special Nature”, gravitational and two other properties of matter, “tied” to the “Eternal Movement” and completely dependent on it. Carriers of key properties of a “Special Nature” have been established: “0”-DE particles and “3”-DM particles (UDM). The unity of their inherent “motionally-gravitational” properties and the peculiarity of the relationship between “motion” and “gravity” are revealed: the higher the intensity of “Eternal Motion”, the stronger the gravitational properties of matter are manifested (and vice versa). The relationship of “time” with the “vibration frequency” and the “mass” of photons with the “degree of bonding and deformation properties of the field” is shown. The maximum level of gravity has been determined, which allows Nature to successfully create the Universe: such a landmark is the proximity to the property of the Primary Source—the “pure graviton” of the OSP space, the most powerful “motionally-gravitational” particle of the Universe. The reasons for the emergence of such an identity of the gravitational properties of particles with the indicators of a “pure graviton” are established: for “0”-DE particles, this is the acquisition of the function of “freedom of movement”;for “3”-DM particles (UDM), the creation of a special structure—a “double field” (“Main” and “Small”). The presence in the “double field” of specific “tools” for the creation of the worlds of the Universe—gravitational “waves” gives rise to impulses (shocks) of varying intensity and shape. A list of functions performed by “waves” in the “Main” and “Small” fields has been compiled. The specific conditions for the formation of “UDM Streams”, their transformation into a “Vortex” and, under the influence of a powerful Initial Impulse (push), sending them to the “place” of the creation of galaxies, are shown. It is suggested that there is a “Cycle of Matter in Nature” in the closed structure of our Universe due to the “work” of “waves” and the functioning of special “factories” in the form of exotic space objects—Black holes.
基金supported by the Project of National Natural Science Foundation of China(51275052)the Project of Science and Technique Development Plan of Beijing Municipal Commission of Education(KM201311232022)
文摘The machining precision not only depends on accurate mechanical structure but also depends on motion compensation method. If manufacturing precision of mechanical structure cannot be improved, the motion compensation is a reasonable way to improve motion precision. A motion compensation method based on neural network of radial basis function(RBF) was presented in this paper. It utilized the infinite approximation advantage of RBF neural network to fit the motion error curve. The best hidden neural quantity was optimized by training the motion error data and calculating the total sum of squares. The best curve coefficient matrix was got and used to calculate motion compensation values. The experiments showed that the motion errors could be reduced obviously by utilizing the method in this paper.
文摘Motion compensation de interlacing is expected to be better than linear techniques; but all the block based motion compensation de interlacing methods cause block artifacts. The algorithm proposed in this paper is concerned with reducing the deficiency of motion compensated interpolation by using adaptive hybrid de interlacing methods. A spatio temporal tensor based approach is used to get more accurate motion field for de interlacing. Motion vector is assigned for each position with pixel precision; the block artifact is reduced significantly. To deal with the artifacts introduced by motion compensation when the motion estimation is incorrect, linear techniques are considered by adaptive weighting. Furthermore, directional filter is adapted to preserve details and the edge discontinuity could be eliminated greatly. Our approach is robust to incorrect motion vector estimation.
文摘After analyzing the characteristics of airborne SAR motion deviation in detail, a new realization method for airborne SAR motion compensation based on two-dimensional division processing is described. By combining the division of local tracks in azimuth direction and the division of sub-mapping strips in range direction, the motion deviation will be compensated accurately. Furthermore, both theoretic analysis and simulation result show that by using this method the problems of motion compensation under complex condition with large motion deviation and large mapping strip width can be resolved well.
文摘With regard to the phase compensation in inverse synthetic aperture radar (ISAR),the modified Doppler centroid tracking (MDCT) method is developed which applies the phase gradient autofocus (PGA) algorithm developed by Wahl[1]to improve the Doppler centroid tracking (DCT) method[2].When the phase compensation is performed,the proposed approach smartly eliminates the effect of the rotational phase component (RPC) on the estimation of the translational phase component (TPC) by circular shifting,windowing and iteration steps. After several iterations,the maximum likelihood estimation and compensation of the TPC of the target can be realized more effectively.The processing results of live data show that the proposed method can improve the imaging quality of ISAR significantly.
文摘Motion compensation is a key step for inverse synthetic aperture radar (ISAR) imaging. Many algorithms have been proposed. The rank one phase estimation (ROPE) algorithm is a good estimator for phase error widely used in SAR. The ROPE algorithm is used in ISAR phase compensation and the concrete implementation steps are presented. Subsequently, the performance of ROPE is analyzed. For ISAR data that fit the ROPE algorithm model, an excellent compensation effect can be obtained with high computation efficiency. Finally, ISAR real data are processed with ROPE and its imaging result is compared with that obtained by the modified Doppler centroid tracking (MDCT) method, which is a robust and good estimator in ISAR phase compensation.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.863-2-5-1-13B)the Jilin Province Science and Technology Development Plan Item(Grant No.20130522107JH)
文摘To enhance the image motion compensation accuracy of off-axis three-mirror anastigmatic( TMA)three-line array aerospace mapping cameras,a new method of image motion velocity field modeling is proposed in this paper. Firstly,based on the imaging principle of mapping cameras,an analytical expression of image motion velocity of off-axis TMA three-line array aerospace mapping cameras is deduced from different coordinate systems we established and the attitude dynamics principle. Then,the case of a three-line array mapping camera is studied,in which the simulation of the focal plane image motion velocity fields of the forward-view camera,the nadir-view camera and the backward-view camera are carried out,and the optimization schemes for image motion velocity matching and drift angle matching are formulated according the simulation results. Finally,this method is verified with a dynamic imaging experimental system. The results are indicative of that when image motion compensation for nadir-view camera is conducted using the proposed image motion velocity field model,the line pair of target images at Nyquist frequency is clear and distinguishable. Under the constraint that modulation transfer function( MTF) reduces by 5%,when the horizontal frequencies of the forward-view camera and the backward-view camera are adjusted uniformly according to the proposed image motion velocity matching scheme,the time delay integration( TDI) stages reach 6 at most. When the TDI stages are more than 6,the three groups of camera will independently undergo horizontal frequency adjustment. However, when the proposed drift angle matching scheme is adopted for uniform drift angle adjustment,the number of TDI stages will not exceed 81. The experimental results have demonstrated the validity and accuracy of the proposed image motion velocity field model and matching optimization scheme,providing reliable basis for on-orbit image motion compensation of aerospace mapping cameras.
基金(No. Y106574) supported by the Natural Science Foundationof Zhejiang Province, China
文摘In this paper we present a motion compensation (MC) design for the newest Audio Video coding Standard (AVS) of China. Because of compression-efficient techniques of variable block size (VBS) and sub-pixel interpolation, intensive pixel calculation and huge memory access are required. We propose a parallel serial filtering mixed luma interpolation data flow and a three-stage multiplication free chroma interpolation scheme. Compared to the conventional designs, the integrated architecture supports about 2.7 times filtering throughput. The proposed MC design utilizes Vertical Z processing order for reference data re-use and saves up to 30% memory bandwidth. The whole design requires 44.3k gates when synthesized at 108 MHz clock frequency using 0.18-μm CMOS technology and can support up to 1920×1088@30 fps AVS HDTV video decoding.
基金Supported by National Natural Science Foundation of China (No.60402032).
文摘A discrete model is set up for High Resolution Range Profile (HRRP) of an extended target and the model of echo from an extended target for a Stepped Chirp Radar (SCR) is proposed. The effect of target motion on a range profile is thoroughly analyzed, and based on which precision re- quirement is developed for motion compensation. By studying the time domain correlation and the rule based on the least burst error, a motion compensation algorithm which satisfies the project requirement is presented, and the cyber-emulation confirms the conclusion. At last the processor is designed by using DSP devices to realize motion compensation and target recognition.
文摘MPEG-4 fine-granularity-scalable (FGS) technology is an effective solution to resolve the network bandwidth varying because FGS provides very fine granular SNR scalability. However, this scalability is obtained with sacrifice of coding efficiency. An one-loop FGS structure is presented based on motion compensation (MC + FGS) to improve the coding efficiency of base FGS. Then it describes and discusses the hybrid spatial-SNR FGS (FGSS) structure that extends SNR scalability of FGS to spatial scalability (spatio-SNR scalability). FGSS structure inherent the low coding efficiency of FGS structure. Combining MC + FGS structure with FGSS structure, a structure of MC + FGSS structure is obtained which acquires both structures' advantages and counteracts both structures' defects. Experimental results prove the MC+ FGSS structure not only obtains fine granular spatio-SNR scalability, but also achieves high coding efficiency.
基金financially supported by the National Natural Science Foundation of China(Grant No.51979030)the Natural Science Foundation of Liaoning Province(Grant No.2021-KF-16-01)the Fundamental Research Funds for the Central Universities。
文摘The maximum predicting error of the commonly used passive truncated mooring system method may reach 30%due to the difference of dynamic characteristics between the truncated and full-depth mooring line.In this paper,the experimental strategy called three-parameter(displacement,velocity and acceleration)active control method at the truncated point of mooring line is established to implement the synchronous equivalent of motion and force,and the realization of active truncated mooring system for model test is studied theoretically.The influences of threeparameter and one-parameter(displacement)active control strategies on the compensation effects are compared by numerical study.The results show that the established three-parameter active control method can feasibly realize the static and dynamic equivalent of truncated and full-depth mooring system,laying a good foundation for the following physical model test of active truncated mooring system.
文摘The application of the vertical hoisting jack and wave motion compensation techniques to the salvage of an ancient sunken boat is introduced. The boat is wooden, loaded with cultural relics. It has been immersed at the bottom of the South China Sea for more than 800 years. In order to protect the structure of the boat and the cultural relics inside to the largest extent, an open caisson is used to hold the sunken beat and the silts around before they are raised from the seabed all together as a whole. In the paper, first, the seakeeping model test of the system of the salvage barge and the open caisson is done to determine some important wave response parameters. And then a further experimental study of the ap- plication of the vertical hoisting jack and wave motion compensation scheme to the salvage of the sunken boat is carried out. In the model tests, the techniques of the integrative mechanic-electronic-hydraulic control, wave motion forecast and wave motion compensation are used to minimize the heave motion of the open caisson. The results of the model tests show that the heave motion of the open caisson can be reduced effectively by the use of the present method.
基金supported by the National Natural Science Foundation of China(61871146)the Fundamental Research Funds for the Central Universitiesthe State Key Laboratory of Millimeter Waves(K202022)。
文摘Inverse synthetic aperture radar(ISAR)imaging of the target with the non-rigid body is very important in the field of radar signal processing.In this paper,a motion compensation method combined with the preprocessing and global technique is proposed to reduce the influence of micro-motion components in the fast time domain,and the micro-Doppler(m-D)signal in the slow time domain is separated by the improved complex-valued empirical-mode decomposition(CEMD)algorithm,which makes the m-D signal more effectively distinguishable from the signal for the main body by translating the target to the Doppler center.Then,a better focused ISAR image of the target with the non-rigid body can be obtained consequently.Results of the simulated and raw data demonstrate the effectiveness of the algorithm.
基金Supported by the National High Technology Research and Development Program of China (863 Program, 2007AA 091101)
文摘Estimation precision of Displaced Phase Center Algorithm(DPCA) is affected by the number of displaced phase center pairs,the bandwidth of transmitting signal and many other factors.Detailed analysis is made on DPCA's estimation precision.Analysis results show that the directional vector estimation precision of DPCA is low,which will produce accumulating errors when phase cen-ters' track is estimated.Because of this reason,DPCA suffers from accumulating errors seriously.To overcome this problem,a method combining DPCA with Sub Aperture Image Correlation(SAIC) is presented.Large synthetic aperture is divided into sub-apertures.Micro errors in sub-aperture are estimated by DPCA and compensated to raw echo data.Bulk errors between sub-apertures are esti-mated by SAIC and compensated directly to sub-aperture images.After that,sub-aperture images are directly used to generate ultimate SAS image.The method is applied to the lake-trial dataset of a 20 kHz SAS prototype system.Results show the method can successfully remove the accumulating error and produce a better SAS image.
文摘Stochastic processes such as diffusion can be analyzed by means of a partial differential equation of the Fokker-Planck type (FPE), which yields a transition probability density, or by a stochastic differential equation of the Langevin type (LE), which yields the time evolution of a statistical process variable. Provided the stochastic process is continuous and certain boundary conditions are met, the two approaches yield equivalent information. However, Brownian motion of radioactively decaying particles is not a continuous process because the Brownian trajectories abruptly terminate when the particle decays. Recent analysis of the Brownian motion of decaying particles by both approaches has led to different mean-square displacements. In this paper, we demonstrate the complete equivalence of the two approaches by 1) showing quantitatively and operationally how the probability densities and statistical moments predicted by the FPE and LE relate to one another, 2) verifying that both approaches lead to identical statistical moments at all orders, and 3) confirming that the analytical solution to the FPE accurately describes the Brownian trajectories obtained by Monte Carlo simulations based on the LE. The analysis in this paper addresses both the spatial distribution of the particles (i.e. the question of displacement as a function of diffusion time) and the temporal distribution (i.e. the question of first-passage time to fixed absorbing boundaries).
基金supported by the Key R&D Program Projects in Hainan Province (ZDY 2019008)the State Key Laboratory of Rail T ransit Engineering Information (SKLK22-08)。
文摘Synthetic aperture radar(SAR) is usually sensitive to trajectory deviations that cause serious motion error in the recorded data. In this paper, a coherent range-dependent mapdrift(CRDMD) algorithm is developed to accommodate the range-variant motion errors. By utilizing the algorithm as an estimate core, robust motion compensation strategy is proposed for unmanned aerial vehicle(UAV) SAR imagery. CRDMD outperforms the conventional map-drift algorithms in both accuracy and efficiency. Real data experiments show that the proposed approach is appropriate for precise motion compensation for UAV SAR.
文摘An adaptive de-interlacing algorithm based on motion compensation is presented. It consists of the detection of motion blocks, the adaptive motion estimation with Kalman filtering, and the motion compensation for motion blocks and field repetition for static blocks. The detection of motion blocks can accurately identify the motion blocks by using successive 4-field images. The motion estimation module with Kalman filtering searches motion vectors only for motion blocks, and the search model is adaptive to motion velocity and acceleration. Two de-interlacing methods are adopted to satisfy the different requirements of motion blocks and static blocks. Compared with full search algorithm, the proposed algorithm greatly reduces the computational amount while keeping the performance approximately.