In this paper, we investigate the problem of approximating solutions of the equations of Lipschitzian ψ-strongly accretive operators and fixed points of Lipschitzian ψ-hemicontractive operators by lshikawa type iter...In this paper, we investigate the problem of approximating solutions of the equations of Lipschitzian ψ-strongly accretive operators and fixed points of Lipschitzian ψ-hemicontractive operators by lshikawa type iterative sequences with errors. Our results unify, improve and extend the results obtained previously by several authors including Li and Liu (Acta Math. Sinica 41 (4)(1998), 845-850), and Osilike (Nonlinear Anal. TMA, 36(1)(1999), 1-9), and also answer completely the open problems mentioned by Chidume (J. Math. Anal. Appl. 151 (2)(1990), 453-461).展开更多
Let X be a real Banach space and A : X→ 2x a bounded uniformly continuous Φ-strongly accretive multivalued mapping. For any f ∈ X, Mann and Ishikawa iterative processes with errors converge strongly to the unique s...Let X be a real Banach space and A : X→ 2x a bounded uniformly continuous Φ-strongly accretive multivalued mapping. For any f ∈ X, Mann and Ishikawa iterative processes with errors converge strongly to the unique solution of Ax (?) f. The conclusion in this paper weakens the stronger conditions about errors in Chidume and Moore's theorem (J. Math. Anal. Appl, 245(2000), 142-160).展开更多
In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under ...In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under the nearly cone-subconvexlike set-valued maps,the theorem of scalarization for vector optimization is obtained.Finally,optimality conditions of ε-strongly efficient solutions for vector optimization with generalized inequality constraints and equality constraints are obtained.展开更多
Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Ou...Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Our results improve and extend thecorresponding results of Noor and Chang-Huang. Moreover, a more general iterativealgorithm for finding the approximate solution of generalized strongly nonlinear quasi-complementarity problems is also given. It is shown that the approximate solution ob-tained by the iterative scheme converges to the exact solution of this quasi-com-plementarity problem.展开更多
Letq>1,and let E be a real q-uniformly smooth Banach space. Let T: E→E be a continuous φstrongly accretive operator.For a given f E,let x*denote the unique solution of the equation Tx=f.Define the operator H:E→E...Letq>1,and let E be a real q-uniformly smooth Banach space. Let T: E→E be a continuous φstrongly accretive operator.For a given f E,let x*denote the unique solution of the equation Tx=f.Define the operator H:E→E by Hx=f+x-Tx,and suppose that the range of H is bounded. for any x1 E let {xn}∞n=qin E be the Ishikawa iterative process defined by Under suitable comditions,the Ishikawa iterative process strongly converges to the unique solution of Tx=f.the related result deals with the problems that Ishikawa iterative process strongly converges to the unique fixed point of -hemicontractive mappings.These results generalize results of Osilike [2],Chidume[4,5]and Tan[10],Zeng[11]and several other results from the class of strongly assertive operators and the class of strongly pseudocontractive operators to the much more general class of -trongly accrtive and class of -hemicontractive maps.展开更多
Let X be a real uniformly smooth Banach space and let T:D(T)(?)X→Xbe (?)-hemicontractive and locally bounded at its fixed point q∈F(T).Under somesuitable assumptions on the iteration parameters {αn}and{βn},we have...Let X be a real uniformly smooth Banach space and let T:D(T)(?)X→Xbe (?)-hemicontractive and locally bounded at its fixed point q∈F(T).Under somesuitable assumptions on the iteration parameters {αn}and{βn},we have proved thatthe Mann and Ishikawa iteration processes for T converge strongly to the unique fixedpoint q of T.Several related results deal with iterative solutions of nonlinear equationsinvolving (?)-strongly quasi-accretive operators.Our results extend and generalize thosecorresponding ones by Xu and Roach,Zhou and Jia and others.展开更多
基金supported by the Teaching and Research Award Fund for Outstanding Young Teachers in Higher Educations of MOE,P.R.C.the National Natural Science Foundation of P.R.C.No.19801023
文摘In this paper, we investigate the problem of approximating solutions of the equations of Lipschitzian ψ-strongly accretive operators and fixed points of Lipschitzian ψ-hemicontractive operators by lshikawa type iterative sequences with errors. Our results unify, improve and extend the results obtained previously by several authors including Li and Liu (Acta Math. Sinica 41 (4)(1998), 845-850), and Osilike (Nonlinear Anal. TMA, 36(1)(1999), 1-9), and also answer completely the open problems mentioned by Chidume (J. Math. Anal. Appl. 151 (2)(1990), 453-461).
文摘Let X be a real Banach space and A : X→ 2x a bounded uniformly continuous Φ-strongly accretive multivalued mapping. For any f ∈ X, Mann and Ishikawa iterative processes with errors converge strongly to the unique solution of Ax (?) f. The conclusion in this paper weakens the stronger conditions about errors in Chidume and Moore's theorem (J. Math. Anal. Appl, 245(2000), 142-160).
基金Foundation item: Supported by the Natural Science Foundation of China(10871216) Supported by the Natural Science Foundation Project of CQ CSTC(2008BB0346, 2007BB0441) Supported by the Excellent Young Teachers Program of Chongqing Jiaotong University(EYT08-016) Acknowledgement The author would like to thank the anonymous referee for the valuable remarks that helped considerably to correct and to improve the presentation.
文摘In locally convex Hausdorff topological vector spaces,ε-strongly efficient solutions for vector optimization with set-valued maps are discussed.Firstly,ε-strongly efficient point of set is introduced.Secondly,under the nearly cone-subconvexlike set-valued maps,the theorem of scalarization for vector optimization is obtained.Finally,optimality conditions of ε-strongly efficient solutions for vector optimization with generalized inequality constraints and equality constraints are obtained.
文摘Using the algorithm in this paper, we prove the existence of solutions to the gene-ralized strongly nonlinear quasi-complementarity problems and the convergence of theiterative sequences generated by the algorithm. Our results improve and extend thecorresponding results of Noor and Chang-Huang. Moreover, a more general iterativealgorithm for finding the approximate solution of generalized strongly nonlinear quasi-complementarity problems is also given. It is shown that the approximate solution ob-tained by the iterative scheme converges to the exact solution of this quasi-com-plementarity problem.
基金the National Natural Science Foundation of China under Grant No. 19801017 andthe Foundation for University Key Teacher by th
文摘Letq>1,and let E be a real q-uniformly smooth Banach space. Let T: E→E be a continuous φstrongly accretive operator.For a given f E,let x*denote the unique solution of the equation Tx=f.Define the operator H:E→E by Hx=f+x-Tx,and suppose that the range of H is bounded. for any x1 E let {xn}∞n=qin E be the Ishikawa iterative process defined by Under suitable comditions,the Ishikawa iterative process strongly converges to the unique solution of Tx=f.the related result deals with the problems that Ishikawa iterative process strongly converges to the unique fixed point of -hemicontractive mappings.These results generalize results of Osilike [2],Chidume[4,5]and Tan[10],Zeng[11]and several other results from the class of strongly assertive operators and the class of strongly pseudocontractive operators to the much more general class of -trongly accrtive and class of -hemicontractive maps.
文摘Let X be a real uniformly smooth Banach space and let T:D(T)(?)X→Xbe (?)-hemicontractive and locally bounded at its fixed point q∈F(T).Under somesuitable assumptions on the iteration parameters {αn}and{βn},we have proved thatthe Mann and Ishikawa iteration processes for T converge strongly to the unique fixedpoint q of T.Several related results deal with iterative solutions of nonlinear equationsinvolving (?)-strongly quasi-accretive operators.Our results extend and generalize thosecorresponding ones by Xu and Roach,Zhou and Jia and others.