A Si p-π-n diode with β-FeSi 2 particles embedded in the unintentionally doped Si (p--type) was designed for determining the band offset at β-FeSi 2-Si heterojunction.When the diode is under forward bias,the elec...A Si p-π-n diode with β-FeSi 2 particles embedded in the unintentionally doped Si (p--type) was designed for determining the band offset at β-FeSi 2-Si heterojunction.When the diode is under forward bias,the electrons injected via the Si n-p- junction diffuse to and are confined in the β-FeSi 2 particles due to the band offset.The storage charge at the β-FeSi 2-Si heterojunction inversely hamper the further diffusion of electrons,giving rise to the localization of electrons in the p--Si near the Si junction,which prevents them from nonradiative recombination channels.This results in electroluminescence (EL) intensity from both Si and β-FeSi 2 quenching slowly up to room temperature.The temperature dependent ratio of EL intensity of β-FeSi 2 to Si indicates the loss of electron confinement following thermal excitation model.The conduction band offset between Si and β-FeSi 2 is determined to be about 0 2eV.展开更多
In this paper,we propose a near-infrared p-type β-FeSi2/n-type 4H-SiC heterojunction photodetector with semiconducting silicide(β-FeSi2) as the active region for the first time.The optoelectronic characteristics o...In this paper,we propose a near-infrared p-type β-FeSi2/n-type 4H-SiC heterojunction photodetector with semiconducting silicide(β-FeSi2) as the active region for the first time.The optoelectronic characteristics of the photodetector are simulated using a commercial simulator at room temperature.The results show that the photodetector has a good rectifying character and a good response to near-infrared light.Interface states should be minimized to obtain a lower reverse leakage current.The response spectrum of the β-FeSi2/4H-SiC detector,which consists of a p-type β-FeSi2 absorption layer with a doping concentration of 1×1015cm-3 and a thickness of 2.5 μm,has a peak of 755 mA/W at 1.42 μm.The illumination of the SiC side obtains a higher responsivity than that of the β-FeSi2 side.The results illustrate that the β-FeSi2/4H-SiC heterojunction can be used as a near-infrared photodetector compatible with near-infrared optically-activated SiC-based power switching devices.展开更多
用 H2 和 Ga_2O_3的高温反应形成元素 Ga 的恒定表面源,通过 SiO_2-Si 复合结构实现了 Ga 在 Si 中的高均匀性掺杂;利用二次离子质谱分析(SIMS)、扩展电阻(SRP)、四探针测试等方法,对 P 型杂质 Ga 在 SiO_2薄膜、SiO_2-Si 两固相接触的...用 H2 和 Ga_2O_3的高温反应形成元素 Ga 的恒定表面源,通过 SiO_2-Si 复合结构实现了 Ga 在 Si 中的高均匀性掺杂;利用二次离子质谱分析(SIMS)、扩展电阻(SRP)、四探针测试等方法,对 P 型杂质 Ga 在 SiO_2薄膜、SiO_2-Si 两固相接触的内界面、近 Si 表面的热分布进行分析;揭示出开管方式扩散 Ga 的实质是由 SiO_2薄膜对 Ga 原子的快速输运及其在 SiO_2-Si 内界面分凝效应两者统一的必然结果;并对该过程 Ga 杂质浓度分布机理进行了分析和讨论。展开更多
文摘A Si p-π-n diode with β-FeSi 2 particles embedded in the unintentionally doped Si (p--type) was designed for determining the band offset at β-FeSi 2-Si heterojunction.When the diode is under forward bias,the electrons injected via the Si n-p- junction diffuse to and are confined in the β-FeSi 2 particles due to the band offset.The storage charge at the β-FeSi 2-Si heterojunction inversely hamper the further diffusion of electrons,giving rise to the localization of electrons in the p--Si near the Si junction,which prevents them from nonradiative recombination channels.This results in electroluminescence (EL) intensity from both Si and β-FeSi 2 quenching slowly up to room temperature.The temperature dependent ratio of EL intensity of β-FeSi 2 to Si indicates the loss of electron confinement following thermal excitation model.The conduction band offset between Si and β-FeSi 2 is determined to be about 0 2eV.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60876050 and 51177134)
文摘In this paper,we propose a near-infrared p-type β-FeSi2/n-type 4H-SiC heterojunction photodetector with semiconducting silicide(β-FeSi2) as the active region for the first time.The optoelectronic characteristics of the photodetector are simulated using a commercial simulator at room temperature.The results show that the photodetector has a good rectifying character and a good response to near-infrared light.Interface states should be minimized to obtain a lower reverse leakage current.The response spectrum of the β-FeSi2/4H-SiC detector,which consists of a p-type β-FeSi2 absorption layer with a doping concentration of 1×1015cm-3 and a thickness of 2.5 μm,has a peak of 755 mA/W at 1.42 μm.The illumination of the SiC side obtains a higher responsivity than that of the β-FeSi2 side.The results illustrate that the β-FeSi2/4H-SiC heterojunction can be used as a near-infrared photodetector compatible with near-infrared optically-activated SiC-based power switching devices.
文摘用 H2 和 Ga_2O_3的高温反应形成元素 Ga 的恒定表面源,通过 SiO_2-Si 复合结构实现了 Ga 在 Si 中的高均匀性掺杂;利用二次离子质谱分析(SIMS)、扩展电阻(SRP)、四探针测试等方法,对 P 型杂质 Ga 在 SiO_2薄膜、SiO_2-Si 两固相接触的内界面、近 Si 表面的热分布进行分析;揭示出开管方式扩散 Ga 的实质是由 SiO_2薄膜对 Ga 原子的快速输运及其在 SiO_2-Si 内界面分凝效应两者统一的必然结果;并对该过程 Ga 杂质浓度分布机理进行了分析和讨论。