An efficient route for the synthesis of 5-substituted 1H-tetrazole via[2+3]cycloaddition of nitriles and sodium azide is reported usingγ-Fe2O3 nanoparticles as a magnetic separable catalyst.Under optimized condition...An efficient route for the synthesis of 5-substituted 1H-tetrazole via[2+3]cycloaddition of nitriles and sodium azide is reported usingγ-Fe2O3 nanoparticles as a magnetic separable catalyst.Under optimized conditions,the moderate to good yields(71-95%) can be obtained.The catalyst can be easily separated by a magnet and reused for several circles.展开更多
A series of Pt-Er/γ-Al2O3 catalysts containing 0. 5 % (mass fraction) platinum and 0.05 %-1.5 % Er were prepared by impregnation of γ-Al2O3 supported with different concentrations of erbium chloride solution. Th...A series of Pt-Er/γ-Al2O3 catalysts containing 0. 5 % (mass fraction) platinum and 0.05 %-1.5 % Er were prepared by impregnation of γ-Al2O3 supported with different concentrations of erbium chloride solution. The surface properties of the catalysts were studied by methods of temperature programmed reduction and temperature programmed desorption. The magnetic behavior of Pt-Er/γ-Al2O3 catalysts were studied with a Faraday magnetic balance and the results show that the addition of Er can affect the surface properties, the catalytic activities, and magnetic behavior of the reforming catalysts. It is found that there is a corresponding relationship between the susceptibility and selectivity of Pt-Er/γ-Al2O3 catalysts. The experimental results show that Er plays the role of electron promoter.展开更多
The effects of rare earth doping on the formation process of α-FeOOH crystallite and the properties of γ-Fe2O3 magnetic powder were investigated. The growth of needle α FeOOH crystallite was completed by the basic ...The effects of rare earth doping on the formation process of α-FeOOH crystallite and the properties of γ-Fe2O3 magnetic powder were investigated. The growth of needle α FeOOH crystallite was completed by the basic process. The experimental results show that the rare earth doping can increase the aspect axial ratio of needle α-FeOOH grains. its anti-sintering capability during the heat-treatment and the thermostability of γ-Fe2O3 magnetic properties. The magnetic properties of γ-Fe2O3 doping with rare earth are as follows: the coercivity Hc=36.3 kA/m (445 Oe), the ratio saturation magnetization σs=90.4μWbm/kg (72 emu/g), the ratio remanent magnetization σr=54 μWbm/kg (43 emu/g), and the temperature coefficient of remanent magnetization of γ-Fe2O3 doping with 0.1 mol% Dy can reach -5 ×10-4℃-1.展开更多
High-purity(99%)carbon nanocoils(CNCs)have been synthesized by using porousα-Fe2O3/SnO2 catalyst.The yield of CNCs reaches 9,098%after a 6 h growth.This value is much higher than the previously reported data,indicati...High-purity(99%)carbon nanocoils(CNCs)have been synthesized by using porousα-Fe2O3/SnO2 catalyst.The yield of CNCs reaches 9,098%after a 6 h growth.This value is much higher than the previously reported data,indicating that this method is promising to synthesize high-purity CNCs on a large scale.It is considered that an appropriate proportion of Fe and Sn,proper particle size distribution,and a loose-porous aggregate structure of the catalyst are the key points to the high-purity growth of CNCs.Benefiting from the high-purity preparation,a CNC Buckypaper was successfully prepared and the electrical,mechanical,and electrochemical properties were investigated comprehensively.Furthermore,as one of the practical applications,the CNC Buckypaper was successfully utilized as an efficient adsorbent for the removal of methylene blue dye from wastewater with an adsorption efficiency of 90.9%.This study provides a facile and economical route for preparing high-purity CNCs,which is suitable for large-quantity production.Furthermore,the fabrication of macroscopic CNC Buckypaper provides promising alternative of adsorbent or other practical applications.展开更多
An efficient and versatile practical protocol for the chemoselective N-tert-butoxycarbonylation of amines using Nano-γ-Fe2O3 and (BOC)2O. Nano-γ-Fe2O3 was applied as an efficient, green, heterogeneous and reusable c...An efficient and versatile practical protocol for the chemoselective N-tert-butoxycarbonylation of amines using Nano-γ-Fe2O3 and (BOC)2O. Nano-γ-Fe2O3 was applied as an efficient, green, heterogeneous and reusable catalyst at ambient temperature;the method is general for the preparation of N-Boc derivatives of aliphatic, heterocyclic, aromatic as well as amino acid derivatives.展开更多
separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed b...separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed by dispersing magnets in a dimethylformamide (DMF) solution con- taining two metal-organic framework (MOF) precursors, namely ZrCI4 and 2-aminobenzenetricar- boxylic acid. This method is simpler and more efficient than previously reported step-by-step method in which magnets were consecutively dispersed in DMF solutions each containing one MOF precursor, and the obtained Fe304@UiO-66-NH2 with three assembly cycles has a higher degree of crystallinity and porosiW. The core-shell Fe3O4@UiO-66-NH2 is highly active and selective in Knoevenagel condensations because of the bifunctionality of UiO-66-NH2 and better mass transfer in the nano-sized shells. It also has good recycling stability, and can be recovered magnetically and reused at least four times without significant loss of catalytic activity and framework integrity. The effects of substitution on the reactivity of benzaldehyde and of substrate size were also investigated.展开更多
The mixed matrix membranes(MMMs) were developed by incorporating graphite oxide(GO) flakes functionalized with iron oxide(Fe_3O_4) into Pebax matrix. The Pebax/Fe_3O_4–GO MMMs were used to separate CO_2/CH_4 and CO_2...The mixed matrix membranes(MMMs) were developed by incorporating graphite oxide(GO) flakes functionalized with iron oxide(Fe_3O_4) into Pebax matrix. The Pebax/Fe_3O_4–GO MMMs were used to separate CO_2/CH_4 and CO_2/N_2 gas mixture. The results showed that the MMMs with magnetic alignment presented the better gas separation performance than that of random arrangement of Pebax/Fe_3O_4–GO mixed matrix membranes. The reason was that the Fe_3O_4–GO flakes arranged magnetically in the membrane played a multiple role in improving the performance of MMMs. Firstly, under the action of the magnetic field,the magnetic alignment of Fe_3O_4–GO flakes in Pebax matrix constructed the shorter transfer path for gas molecule, increasing the CO_2 permeability. Secondly, the hydroxyl groups in GO flakes and the presence of Fe_3O_4 have stronger binding force for water, improving the CO_2 solubility selectivity. Thirdly, the better interaction between the magnetic alignment of GO composites and polymer matrix, reduced the interface defects. Especially, the optimum gas separation performance was obtained at the Fe_3O_4–GO flakes content of 3 wt% in Pebax matrix at vertical arrangement with selectivity of 47 and 75 for CO_2/CH_4 and CO_2/N_2, respectively, and CO_2 permeability of 538 Barrer at 0.2 MPa and room temperature.展开更多
Nanometer α-Fe2O3 catalysts were prepared by hydrolyzation in high temperature. Three kinds of precipitators, NaOH, (NH4)2CO3 and urea were used to compare the effect in the process of hydrolyzation. Nanometer size...Nanometer α-Fe2O3 catalysts were prepared by hydrolyzation in high temperature. Three kinds of precipitators, NaOH, (NH4)2CO3 and urea were used to compare the effect in the process of hydrolyzation. Nanometer sizer, transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to test the profiles and diameters of the product particles. The test results indicate that the production is nanometer α-Fe2O3 with narrow particle size distribution (PSD) and good dispersibility. The catalysts are mixed with ammonia perchlorate (AP) in 1.0 wt.%. And the composite particles of catalysts with AP are prepared using a new solvent-nonsolvent method. Differential thermal analyzer (DTA) is employed to analysis the thermal decomposition of the composite particles and pure AP sample. The results imply that the thermal decomposition curve peaks of the samples in which nanometer α-Fe2O3 catalysts are added appear comparatively more ahead than that of pure AP sample. Among these mixtures added nanometer material, the smaller the particle diameter of catalyst is, the more ahead the thermal decomposition curve peaks of AP appear. The high and low temperature thermal decomposition curve peaks of AP mixed with the catalyst deposed by urea are more ahead of 77.8?℃ and 9.7?℃ than that of pure AP, respectively. The mechanism of the catalyst deposed by urea with smaller diameter and the distinct catalysis of the particles on the thermal decomposition of AP are discussed.展开更多
Based on the difference of hydroxy group configuration on the special adsorption and coordination of phosphate on the dispersed α-Fe2O3 nanodisks with diameter of 150-200 nm different planes of α-Fe2O3 nanoparticles...Based on the difference of hydroxy group configuration on the special adsorption and coordination of phosphate on the dispersed α-Fe2O3 nanodisks with diameter of 150-200 nm different planes of α-Fe2O3 nanoparticles, using (001) plane of α-Fe2O3, well-crystallized and well and thickness of 40-80 nm were synthesized via a hydrotherrnal method. The magnetic properties of synthesized nanodisks were investigated. It was found that the nanodisks possessed a saturation magnetization (Ms) of 0.38 emu/g, a rernanent magnetization (Mr) of 0.031 ernu/g and a coercivity of 452.91 Oe at room temperature. The Mr and coercivity of synthesized α-Fe2O3 nanodisks are higher and the Ms is lower than those of other previously reported α-Fe2O3 nanostructures.展开更多
Metal organic frameworks(MOFs) are an important platform for heterogeneous catalysts.Although MOFs with a smaller particle size exhibit better catalytic performance because of less diffusion limitations,their separa...Metal organic frameworks(MOFs) are an important platform for heterogeneous catalysts.Although MOFs with a smaller particle size exhibit better catalytic performance because of less diffusion limitations,their separation and recycling after catalytic reactions are difficult.The integration of MOFs with magnetic nanoparticles could facilitate their recovery and separation.Especially,the shell thickness of the core-shell structured composites is controllable.In this study,amino-functionalized Fe3O4@Cu3(BTC)2 was fabricated by a stepwise assembly method and its catalytic performance in Knoevenagel condensation was investigated.The results demonstrated that the magnetic hybrid material exhibited a core-shell structure,with a shell thickness of about 2 00 nm.Furthermore,it not only exhibited high catalytic activity,but remarkably,it could also be easily recovered magnetically and recycled without obvious loss of catalytic efficiency after three cycles.展开更多
In this protocol, Ag supported on the hydroxyapatite-core–shell magnetic γ-Fe2O3nanoparticles(γFe2O3@HAp-Ag NPs) as a novel, efficient, and magnetically recyclable catalyst is synthesized, and characterized by tr...In this protocol, Ag supported on the hydroxyapatite-core–shell magnetic γ-Fe2O3nanoparticles(γFe2O3@HAp-Ag NPs) as a novel, efficient, and magnetically recyclable catalyst is synthesized, and characterized by transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction(XRD), and vibrating sample magnetometry(VSM). The use of the catalyst is described in the synthesis of coumarin derivatives by the Pechmann condensation of various phenols with β-ketoesters under solvent- and halogen-free conditions at 80℃.This novel and inexpensive method offers advantages, such as recyclability simple experimental protocol, short reaction time, minimal work-up procedure, and excellent yields of products, together with desirable, eco-friendly, green aspects by avoiding toxic elements and solvents, and ease of recovery from the reaction mixture using an external magnet.展开更多
In this study, silicone-oil-based γ-Fe2O3 mag- netic fluid was successfully prepared by thermal oxidizing of Fe3O4 magnetic nanoparticles, which were prepared by chemical co-precipitation with FeSO4-7H2O and FeCl3- 6...In this study, silicone-oil-based γ-Fe2O3 mag- netic fluid was successfully prepared by thermal oxidizing of Fe3O4 magnetic nanoparticles, which were prepared by chemical co-precipitation with FeSO4-7H2O and FeCl3- 6H2O, and their surface was modified by oleate ligands. Silicone oil was used as carrier liquid and oleic acid was as surfactant for preparing γ-Fe2O3 magnetic fluid. It is found that the Fe3O4 nanoparticles surrounded by oleate ligands are not damaged during the thermal oxidizing. The shape of γ-Fe2O3 magnetic nanoparticles prepared is similar to spherical, and their mean size is about 10-20 nm, which has nothing obvious difference compared with Fe3O4. Thesaturation magnetization of γ-Fe2O3 magnetic fluid pre-pared is 14.25 A.me.kg-1 and that of γ-Fe2O3 nanoparti-cles is 57.56 A.m2.kg-1. The needle of γ-Fe2O3 magneticfluid is much bigger than that of Fe3O4 magnetic fluidunder the same magnetic field, which shows better mag-netic properties.展开更多
It is the result of a systemic study about uniform hematite nanopallets with length of about 100 nm, width of about 30 nm, and thickness of less than 10 nm. The sample has superparamagnetic(SPM) properties above the b...It is the result of a systemic study about uniform hematite nanopallets with length of about 100 nm, width of about 30 nm, and thickness of less than 10 nm. The sample has superparamagnetic(SPM) properties above the blocking temperature of ~16 K. The temperature dependence of magnetization was well fitted by Bloch T^(3/2) law considering the dipolar interaction of the particles. The field dependence of magnetization was fitted with revised Langevin equation.The magnetization of the weak ferromagnetic(WF) canted spins contributes to the linear portion in the high field region;the surface uncompensated spins and the parasitic ferromagnetic moments due to the canted spins both contribute to the particle moments and the superparamagnetic behavior.展开更多
The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials durin...The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials during neutralization and precipitation was investigated. XRD, BET and particle size distribution (PSD) were used to characterize the prepared catalysts. It was found that the catalyst crystals were all γ-Fe2O3, and the intermediate of the catalyst after aging was Fe3O4. The crystallographic form of the catalyst and its intermediate was not affected by the addition sequence in the neutralization and precipitation process. The results showed that the specific surface area and the particle size of the catalysts depended on the addition sequence to the mother liquor. Cobalt with a small amount of copper and aluminum could increase the specific surface area and decrease the particle size of catalysts.展开更多
Uniform rhombohedral α-Fe2O3 nanoparticles, -60nm in size, were synthesized via a triphenyl- phosphine-assisted hydrothermal method. Scanning electron micrograph (SEM) and transmission electron micrograph (TEM) a...Uniform rhombohedral α-Fe2O3 nanoparticles, -60nm in size, were synthesized via a triphenyl- phosphine-assisted hydrothermal method. Scanning electron micrograph (SEM) and transmission electron micrograph (TEM) analyses showed that the as-synthesized rhombohedral nanoparticles were enclosed by six (1 04) planes. The concentration of triphenylphosphine played an important role in morphological evolution of the α-Fe2O3 nanoparticles. The as-prepared rhombohedral nanoparticles possessed remanent magnetization Mr of 2.6 × 10^-3 emu/g and coercivity Hc of 2.05 Oe, both lower than those of other α-Fe2O3 particles with similar size, indicating their potential applications as superparamagnetic precursor materials. Furthermore, these rbombohedral α-Fe2O3 nanoparticles exhibited good sensor capability toward H2O2 with a linear response in the concentration range of 2-20 mM.展开更多
CdS/α-Fe2O3 hierarchical nanostructures, where the CdS nanorods grow irregularly on the side surface of α-Fe2O3 nanorods, were synthesized via a three-step process. The diameters and lengths of CdS nanorods can be t...CdS/α-Fe2O3 hierarchical nanostructures, where the CdS nanorods grow irregularly on the side surface of α-Fe2O3 nanorods, were synthesized via a three-step process. The diameters and lengths of CdS nanorods can be tuned by changing the ethylenediamine (EDA) and Cd ion concentrations. The magnetic investigations by superconducting quantum interference device indicate that the hierarchical nanostructures have an Morin transition at lower temperature (230 K) than that of the single bulk α-Fe2O3 materials (263 K). Importantly, the hierarchical nanostructures exhibit weakly ferromagnetic characteristics at 300 K. A sharp peak assigned to the surface trap induced emission are observed in room temperature PL spectra. Combining with the optoelectronic properties of CdS, the CdS/ α-Fe2O3 hierarchical nanostructures may be used as multi-functional materials for optoelectronic and magnetic devices.展开更多
Advanced oxidation processes are widely applied to removal of persistent toxic substances from wastewater by hydroxyl radicals(·OH),which is generated from hydrogen peroxide(H2O2)decomposition.However,their pract...Advanced oxidation processes are widely applied to removal of persistent toxic substances from wastewater by hydroxyl radicals(·OH),which is generated from hydrogen peroxide(H2O2)decomposition.However,their practical applications have been hampered by many strict conditions,such as iron sludge,rigid pH condition,large doses of hydrogen peroxide and Fe^2+,etc.Herein,a magnetically recyclable Fe3O4@polydopamine(Fe3O4@PDA)coreshell nanocomposite was fabricated.As an excellent reducing agent,it can convert Fe^3+to Fe^2+.Combined with the coordination of polydopamine and ferric ions,the production of iron sludge is inhibited.The minimum concentration of hydrogen peroxide(0.2 mmol/L and Fe^2+(0.18 mmol/L))is 150-fold and 100-fold lower than that of previous reports,respectively.It also exhibits excellent degradation performance over a wide pH range from 3.0 to 9.0.Even after the tenth recycling,it still achieves over 99%degradation efficiency with the total organic carbon degradation rate of 80%,which is environmentally benign and has a large economic advantage.This discovery paves a way for extensive practical application of advanced oxidation processes,especially in environmental remediation.展开更多
Novel magnetic core/shell bimetallic Au/Cu nanoparticles(Fe_3O_4@SiO_2-Au/Cu NPs) were prepared using SiO_2-coated iron oxide(Fe_3O_4@SiO_2) as a supported material. The magnetic Fe_3O_4 colloidal nanocrystal clus...Novel magnetic core/shell bimetallic Au/Cu nanoparticles(Fe_3O_4@SiO_2-Au/Cu NPs) were prepared using SiO_2-coated iron oxide(Fe_3O_4@SiO_2) as a supported material. The magnetic Fe_3O_4 colloidal nanocrystal clusters(CNCs) as nano-core were modified with a silica coating for improvement stability and superficial area of the Au-Cu particles. The morphological structure and chemical composition of the Fe_3O_4@SiO_2-Au/Cu NPs were characterized with high-resolution transmission electron microscopy(HRTEM), energy-dispersive X-ray(EDX) and X-ray photoelectron spectroscopy(XPS) analyses. The Au and Cu NPs were deposited on the SiO_2 surface in a highly dense and well dispersed manner with an average size of approximately 5 nm. The Fe_3O_4@SiO_2-Au/Cu NPs as magnetic nano-catalysts were applied to the Ullmann coupling reaction of bromamine acid to synthesize 4,40-diamino-1,10-dianthraquinonyl-3,30-disulfonic acid(DAS). The prepared Fe_3O_4@SiO_2-Au/Cu NPs exhibited efficient catalytic activity with higher conversion and selectivity. A bromamine acid conversion of 97.35% and selectivity for DAS of 88.67% were obtained in aqueous medium. The magnetic nano-catalysts can be readily separated from the reaction system and reused. This new nano-catalytic reaction represents a useful and attractive cleaner production system. The new catalyst system has important and potential applications in dye and pigment industry.展开更多
Uniformly sized α-Fe2O3 hexagonal platelets were synthesized by a hydrothermal process using Fe(OH)3 suspension and large amount of NaOH. The reaction products were characterized by X-ray diffraction (XRD), scan...Uniformly sized α-Fe2O3 hexagonal platelets were synthesized by a hydrothermal process using Fe(OH)3 suspension and large amount of NaOH. The reaction products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and a vibrating sample magnetometer (VSM). The results show that the hexagonaq platelets are fine, monodisperse and consisting of single-crystals. The magnetic hysteresis (M-H) curvel of the samples measured at room temperature indicates that the α-Fe2O3 micro-platelets exhibit ferromagnetic behaviors with relatively low coercivity.展开更多
基金the Jiangsu Province Foundation of Natural Science(No.BK2009678) for the financial support
文摘An efficient route for the synthesis of 5-substituted 1H-tetrazole via[2+3]cycloaddition of nitriles and sodium azide is reported usingγ-Fe2O3 nanoparticles as a magnetic separable catalyst.Under optimized conditions,the moderate to good yields(71-95%) can be obtained.The catalyst can be easily separated by a magnet and reused for several circles.
文摘A series of Pt-Er/γ-Al2O3 catalysts containing 0. 5 % (mass fraction) platinum and 0.05 %-1.5 % Er were prepared by impregnation of γ-Al2O3 supported with different concentrations of erbium chloride solution. The surface properties of the catalysts were studied by methods of temperature programmed reduction and temperature programmed desorption. The magnetic behavior of Pt-Er/γ-Al2O3 catalysts were studied with a Faraday magnetic balance and the results show that the addition of Er can affect the surface properties, the catalytic activities, and magnetic behavior of the reforming catalysts. It is found that there is a corresponding relationship between the susceptibility and selectivity of Pt-Er/γ-Al2O3 catalysts. The experimental results show that Er plays the role of electron promoter.
文摘The effects of rare earth doping on the formation process of α-FeOOH crystallite and the properties of γ-Fe2O3 magnetic powder were investigated. The growth of needle α FeOOH crystallite was completed by the basic process. The experimental results show that the rare earth doping can increase the aspect axial ratio of needle α-FeOOH grains. its anti-sintering capability during the heat-treatment and the thermostability of γ-Fe2O3 magnetic properties. The magnetic properties of γ-Fe2O3 doping with rare earth are as follows: the coercivity Hc=36.3 kA/m (445 Oe), the ratio saturation magnetization σs=90.4μWbm/kg (72 emu/g), the ratio remanent magnetization σr=54 μWbm/kg (43 emu/g), and the temperature coefficient of remanent magnetization of γ-Fe2O3 doping with 0.1 mol% Dy can reach -5 ×10-4℃-1.
基金financially supported by the National Natural Science Foundation of China(Nos.51661145025,51972039,and 51803018)
文摘High-purity(99%)carbon nanocoils(CNCs)have been synthesized by using porousα-Fe2O3/SnO2 catalyst.The yield of CNCs reaches 9,098%after a 6 h growth.This value is much higher than the previously reported data,indicating that this method is promising to synthesize high-purity CNCs on a large scale.It is considered that an appropriate proportion of Fe and Sn,proper particle size distribution,and a loose-porous aggregate structure of the catalyst are the key points to the high-purity growth of CNCs.Benefiting from the high-purity preparation,a CNC Buckypaper was successfully prepared and the electrical,mechanical,and electrochemical properties were investigated comprehensively.Furthermore,as one of the practical applications,the CNC Buckypaper was successfully utilized as an efficient adsorbent for the removal of methylene blue dye from wastewater with an adsorption efficiency of 90.9%.This study provides a facile and economical route for preparing high-purity CNCs,which is suitable for large-quantity production.Furthermore,the fabrication of macroscopic CNC Buckypaper provides promising alternative of adsorbent or other practical applications.
文摘An efficient and versatile practical protocol for the chemoselective N-tert-butoxycarbonylation of amines using Nano-γ-Fe2O3 and (BOC)2O. Nano-γ-Fe2O3 was applied as an efficient, green, heterogeneous and reusable catalyst at ambient temperature;the method is general for the preparation of N-Boc derivatives of aliphatic, heterocyclic, aromatic as well as amino acid derivatives.
基金supported by the National Natural Science Foundation of China (21203017)Open Fund of State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (N-11-3)+1 种基金Program for Liaoning Excellent Talents in University (LNET)the Funda-mental Research Funds for the Central Universities (DC201502020304)~~
文摘separation is an attractive alternative to filtration or centrifugation for separating solid catalysts from a liquid phase, Here, core-shell Fe3O4@UiO-66-NH2 nanohybrids with well-defined structures were constructed by dispersing magnets in a dimethylformamide (DMF) solution con- taining two metal-organic framework (MOF) precursors, namely ZrCI4 and 2-aminobenzenetricar- boxylic acid. This method is simpler and more efficient than previously reported step-by-step method in which magnets were consecutively dispersed in DMF solutions each containing one MOF precursor, and the obtained Fe304@UiO-66-NH2 with three assembly cycles has a higher degree of crystallinity and porosiW. The core-shell Fe3O4@UiO-66-NH2 is highly active and selective in Knoevenagel condensations because of the bifunctionality of UiO-66-NH2 and better mass transfer in the nano-sized shells. It also has good recycling stability, and can be recovered magnetically and reused at least four times without significant loss of catalytic activity and framework integrity. The effects of substitution on the reactivity of benzaldehyde and of substrate size were also investigated.
基金supported by the National High Technology Research and Development Program of China (2012AA03A611)The Program for Changjiang Scholars and Innovative Research Team in University (IRT-15R46)Yangtze River scholar research project of Shihezi University (CJXZ201601)
文摘The mixed matrix membranes(MMMs) were developed by incorporating graphite oxide(GO) flakes functionalized with iron oxide(Fe_3O_4) into Pebax matrix. The Pebax/Fe_3O_4–GO MMMs were used to separate CO_2/CH_4 and CO_2/N_2 gas mixture. The results showed that the MMMs with magnetic alignment presented the better gas separation performance than that of random arrangement of Pebax/Fe_3O_4–GO mixed matrix membranes. The reason was that the Fe_3O_4–GO flakes arranged magnetically in the membrane played a multiple role in improving the performance of MMMs. Firstly, under the action of the magnetic field,the magnetic alignment of Fe_3O_4–GO flakes in Pebax matrix constructed the shorter transfer path for gas molecule, increasing the CO_2 permeability. Secondly, the hydroxyl groups in GO flakes and the presence of Fe_3O_4 have stronger binding force for water, improving the CO_2 solubility selectivity. Thirdly, the better interaction between the magnetic alignment of GO composites and polymer matrix, reduced the interface defects. Especially, the optimum gas separation performance was obtained at the Fe_3O_4–GO flakes content of 3 wt% in Pebax matrix at vertical arrangement with selectivity of 47 and 75 for CO_2/CH_4 and CO_2/N_2, respectively, and CO_2 permeability of 538 Barrer at 0.2 MPa and room temperature.
文摘Nanometer α-Fe2O3 catalysts were prepared by hydrolyzation in high temperature. Three kinds of precipitators, NaOH, (NH4)2CO3 and urea were used to compare the effect in the process of hydrolyzation. Nanometer sizer, transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to test the profiles and diameters of the product particles. The test results indicate that the production is nanometer α-Fe2O3 with narrow particle size distribution (PSD) and good dispersibility. The catalysts are mixed with ammonia perchlorate (AP) in 1.0 wt.%. And the composite particles of catalysts with AP are prepared using a new solvent-nonsolvent method. Differential thermal analyzer (DTA) is employed to analysis the thermal decomposition of the composite particles and pure AP sample. The results imply that the thermal decomposition curve peaks of the samples in which nanometer α-Fe2O3 catalysts are added appear comparatively more ahead than that of pure AP sample. Among these mixtures added nanometer material, the smaller the particle diameter of catalyst is, the more ahead the thermal decomposition curve peaks of AP appear. The high and low temperature thermal decomposition curve peaks of AP mixed with the catalyst deposed by urea are more ahead of 77.8?℃ and 9.7?℃ than that of pure AP, respectively. The mechanism of the catalyst deposed by urea with smaller diameter and the distinct catalysis of the particles on the thermal decomposition of AP are discussed.
文摘Based on the difference of hydroxy group configuration on the special adsorption and coordination of phosphate on the dispersed α-Fe2O3 nanodisks with diameter of 150-200 nm different planes of α-Fe2O3 nanoparticles, using (001) plane of α-Fe2O3, well-crystallized and well and thickness of 40-80 nm were synthesized via a hydrotherrnal method. The magnetic properties of synthesized nanodisks were investigated. It was found that the nanodisks possessed a saturation magnetization (Ms) of 0.38 emu/g, a rernanent magnetization (Mr) of 0.031 ernu/g and a coercivity of 452.91 Oe at room temperature. The Mr and coercivity of synthesized α-Fe2O3 nanodisks are higher and the Ms is lower than those of other previously reported α-Fe2O3 nanostructures.
基金supported by the National Natural Science Foundation of China (21203017)the Open Fund of State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences(N-11-3)+1 种基金the Program for Liaoning Excellent Talents in University (LNET)the Fundamental Research Funds for the Central Universities (DC201502020304)~~
文摘Metal organic frameworks(MOFs) are an important platform for heterogeneous catalysts.Although MOFs with a smaller particle size exhibit better catalytic performance because of less diffusion limitations,their separation and recycling after catalytic reactions are difficult.The integration of MOFs with magnetic nanoparticles could facilitate their recovery and separation.Especially,the shell thickness of the core-shell structured composites is controllable.In this study,amino-functionalized Fe3O4@Cu3(BTC)2 was fabricated by a stepwise assembly method and its catalytic performance in Knoevenagel condensation was investigated.The results demonstrated that the magnetic hybrid material exhibited a core-shell structure,with a shell thickness of about 2 00 nm.Furthermore,it not only exhibited high catalytic activity,but remarkably,it could also be easily recovered magnetically and recycled without obvious loss of catalytic efficiency after three cycles.
文摘In this protocol, Ag supported on the hydroxyapatite-core–shell magnetic γ-Fe2O3nanoparticles(γFe2O3@HAp-Ag NPs) as a novel, efficient, and magnetically recyclable catalyst is synthesized, and characterized by transmission electron microscopy(TEM), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction(XRD), and vibrating sample magnetometry(VSM). The use of the catalyst is described in the synthesis of coumarin derivatives by the Pechmann condensation of various phenols with β-ketoesters under solvent- and halogen-free conditions at 80℃.This novel and inexpensive method offers advantages, such as recyclability simple experimental protocol, short reaction time, minimal work-up procedure, and excellent yields of products, together with desirable, eco-friendly, green aspects by avoiding toxic elements and solvents, and ease of recovery from the reaction mixture using an external magnet.
基金financially supported by the National Natural Science Foundation of China (No.51274039)
文摘In this study, silicone-oil-based γ-Fe2O3 mag- netic fluid was successfully prepared by thermal oxidizing of Fe3O4 magnetic nanoparticles, which were prepared by chemical co-precipitation with FeSO4-7H2O and FeCl3- 6H2O, and their surface was modified by oleate ligands. Silicone oil was used as carrier liquid and oleic acid was as surfactant for preparing γ-Fe2O3 magnetic fluid. It is found that the Fe3O4 nanoparticles surrounded by oleate ligands are not damaged during the thermal oxidizing. The shape of γ-Fe2O3 magnetic nanoparticles prepared is similar to spherical, and their mean size is about 10-20 nm, which has nothing obvious difference compared with Fe3O4. Thesaturation magnetization of γ-Fe2O3 magnetic fluid pre-pared is 14.25 A.me.kg-1 and that of γ-Fe2O3 nanoparti-cles is 57.56 A.m2.kg-1. The needle of γ-Fe2O3 magneticfluid is much bigger than that of Fe3O4 magnetic fluidunder the same magnetic field, which shows better mag-netic properties.
基金financially supported by the National Natural Science Foundation of China (Nos. 11674023, 51371015,51331002, and 51501004)Beijing Municipal Science and Technology Project (No. 217111000220000)
文摘It is the result of a systemic study about uniform hematite nanopallets with length of about 100 nm, width of about 30 nm, and thickness of less than 10 nm. The sample has superparamagnetic(SPM) properties above the blocking temperature of ~16 K. The temperature dependence of magnetization was well fitted by Bloch T^(3/2) law considering the dipolar interaction of the particles. The field dependence of magnetization was fitted with revised Langevin equation.The magnetization of the weak ferromagnetic(WF) canted spins contributes to the linear portion in the high field region;the surface uncompensated spins and the parasitic ferromagnetic moments due to the canted spins both contribute to the particle moments and the superparamagnetic behavior.
文摘The preparation of the iron-based catalysts promoted by cobalt with a small amount of copper and aluminum for the high temperature shift reaction (HTS) with different sequences of adding catalyst raw materials during neutralization and precipitation was investigated. XRD, BET and particle size distribution (PSD) were used to characterize the prepared catalysts. It was found that the catalyst crystals were all γ-Fe2O3, and the intermediate of the catalyst after aging was Fe3O4. The crystallographic form of the catalyst and its intermediate was not affected by the addition sequence in the neutralization and precipitation process. The results showed that the specific surface area and the particle size of the catalysts depended on the addition sequence to the mother liquor. Cobalt with a small amount of copper and aluminum could increase the specific surface area and decrease the particle size of catalysts.
基金supported by the National Natural Science Foundation of China(No.21003147)Natural Science Foundation of Shanxi(2011011007-3)the State Key Laboratory of Coal Conversion(SKLCC) in-house project(No.2011BWZ005)
文摘Uniform rhombohedral α-Fe2O3 nanoparticles, -60nm in size, were synthesized via a triphenyl- phosphine-assisted hydrothermal method. Scanning electron micrograph (SEM) and transmission electron micrograph (TEM) analyses showed that the as-synthesized rhombohedral nanoparticles were enclosed by six (1 04) planes. The concentration of triphenylphosphine played an important role in morphological evolution of the α-Fe2O3 nanoparticles. The as-prepared rhombohedral nanoparticles possessed remanent magnetization Mr of 2.6 × 10^-3 emu/g and coercivity Hc of 2.05 Oe, both lower than those of other α-Fe2O3 particles with similar size, indicating their potential applications as superparamagnetic precursor materials. Furthermore, these rbombohedral α-Fe2O3 nanoparticles exhibited good sensor capability toward H2O2 with a linear response in the concentration range of 2-20 mM.
基金Supported by the National Natural Science Foundation of China (Grant Nos 50772025 and 50872159)the Ministry of Science and Technology of China (Grant No 2008DFR20420)+3 种基金the China Postdoctoral Science Foundation (Grant Nos 20060400042 and 200801044)the Natural Science Foundation of Heilongjiang Province, China (Grant No F200828)the Specialized Research Fund for the Doc-toral Program of Higher Education of China (Grant No 20070217002)the Innovation Foundation of Harbin City (Grant No RC2006QN017016)
文摘CdS/α-Fe2O3 hierarchical nanostructures, where the CdS nanorods grow irregularly on the side surface of α-Fe2O3 nanorods, were synthesized via a three-step process. The diameters and lengths of CdS nanorods can be tuned by changing the ethylenediamine (EDA) and Cd ion concentrations. The magnetic investigations by superconducting quantum interference device indicate that the hierarchical nanostructures have an Morin transition at lower temperature (230 K) than that of the single bulk α-Fe2O3 materials (263 K). Importantly, the hierarchical nanostructures exhibit weakly ferromagnetic characteristics at 300 K. A sharp peak assigned to the surface trap induced emission are observed in room temperature PL spectra. Combining with the optoelectronic properties of CdS, the CdS/ α-Fe2O3 hierarchical nanostructures may be used as multi-functional materials for optoelectronic and magnetic devices.
基金financial supports from the National Natural Science Foundation of China(No.51373137)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2017JQ2002)+3 种基金the International Cooperation Project of Shaanxi Province(No.2016KW-053)the Fundamental Research Funds for the Central Universities(No.3102018zy047)the Graduate Starting Seed Fund of Northwestern Polytechnical University(No.ZZ2018195)Shanghai space science and technology innovation fund。
文摘Advanced oxidation processes are widely applied to removal of persistent toxic substances from wastewater by hydroxyl radicals(·OH),which is generated from hydrogen peroxide(H2O2)decomposition.However,their practical applications have been hampered by many strict conditions,such as iron sludge,rigid pH condition,large doses of hydrogen peroxide and Fe^2+,etc.Herein,a magnetically recyclable Fe3O4@polydopamine(Fe3O4@PDA)coreshell nanocomposite was fabricated.As an excellent reducing agent,it can convert Fe^3+to Fe^2+.Combined with the coordination of polydopamine and ferric ions,the production of iron sludge is inhibited.The minimum concentration of hydrogen peroxide(0.2 mmol/L and Fe^2+(0.18 mmol/L))is 150-fold and 100-fold lower than that of previous reports,respectively.It also exhibits excellent degradation performance over a wide pH range from 3.0 to 9.0.Even after the tenth recycling,it still achieves over 99%degradation efficiency with the total organic carbon degradation rate of 80%,which is environmentally benign and has a large economic advantage.This discovery paves a way for extensive practical application of advanced oxidation processes,especially in environmental remediation.
基金financially supported by the Shanghai Natural Science Foundation (No. 13ZR1400300)National Key R&D Program of China (No. 2017YFB030900)
文摘Novel magnetic core/shell bimetallic Au/Cu nanoparticles(Fe_3O_4@SiO_2-Au/Cu NPs) were prepared using SiO_2-coated iron oxide(Fe_3O_4@SiO_2) as a supported material. The magnetic Fe_3O_4 colloidal nanocrystal clusters(CNCs) as nano-core were modified with a silica coating for improvement stability and superficial area of the Au-Cu particles. The morphological structure and chemical composition of the Fe_3O_4@SiO_2-Au/Cu NPs were characterized with high-resolution transmission electron microscopy(HRTEM), energy-dispersive X-ray(EDX) and X-ray photoelectron spectroscopy(XPS) analyses. The Au and Cu NPs were deposited on the SiO_2 surface in a highly dense and well dispersed manner with an average size of approximately 5 nm. The Fe_3O_4@SiO_2-Au/Cu NPs as magnetic nano-catalysts were applied to the Ullmann coupling reaction of bromamine acid to synthesize 4,40-diamino-1,10-dianthraquinonyl-3,30-disulfonic acid(DAS). The prepared Fe_3O_4@SiO_2-Au/Cu NPs exhibited efficient catalytic activity with higher conversion and selectivity. A bromamine acid conversion of 97.35% and selectivity for DAS of 88.67% were obtained in aqueous medium. The magnetic nano-catalysts can be readily separated from the reaction system and reused. This new nano-catalytic reaction represents a useful and attractive cleaner production system. The new catalyst system has important and potential applications in dye and pigment industry.
基金provided by the National Natural Science Foundation of China(Grant 50661005)
文摘Uniformly sized α-Fe2O3 hexagonal platelets were synthesized by a hydrothermal process using Fe(OH)3 suspension and large amount of NaOH. The reaction products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and a vibrating sample magnetometer (VSM). The results show that the hexagonaq platelets are fine, monodisperse and consisting of single-crystals. The magnetic hysteresis (M-H) curvel of the samples measured at room temperature indicates that the α-Fe2O3 micro-platelets exhibit ferromagnetic behaviors with relatively low coercivity.