Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output t...Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted.展开更多
Multi-proxies of lacustrine sediments, such as total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), total sulfur (TS), hydrogen index (HI), oxygen index (OI) and stable car...Multi-proxies of lacustrine sediments, such as total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), total sulfur (TS), hydrogen index (HI), oxygen index (OI) and stable carbon isotopic composition of organic matter (δ^(13)C_(org)), were analyzed using a 7.3 m core from Zige Tangco. The source of the organic matter in the sediment was mainly from autochthonous phyto-plankton, therefore the significances of proxies can be interpreted as that high TOC, TOC/TS, HI and δ^(13)C_(org) values, low TC, TIC values corresponded to warm and wet climatic condition, and vice versa. The process of climatic development in the Zige Tangco region was hence recovered. During the early and Mid-Holocene, the climate was warm and wet and intensive cold events occurred during the periods of 8600 to 8400 cal a BP and 7400 to 7000 cal a BP. In the second half of Holocene, the climate became cold and dry gradually. The palaeoclimatic process during Holocene in Zige Tangco region matched well with that in Co Ngoin region which is ca 40 km to the south-east. Therefore this palaeoclimatic process represents the Holocene climatic feature in the Central Tibetan Plateau which has the same pattern in the Northern Tibetan Plateau, but the time and duration of some climatic events might be different. We can conclude that in Holocene solar insolation controlled the climatic pattern on the central Tibetan Plateau.展开更多
Four carbonate carbon isotope(δ^(13)C_(carb))excursions are recognized in the Ediacaran Doushantuo Formation in South China,the genesis of which remains disputed.Whereas three of these δ^(13)C_(carb) excursions poss...Four carbonate carbon isotope(δ^(13)C_(carb))excursions are recognized in the Ediacaran Doushantuo Formation in South China,the genesis of which remains disputed.Whereas three of these δ^(13)C_(carb) excursions possibly record secular biogeochemical variations,the other one,namely Weng'an negative carbonate carbon isotope excursion(WANCE)with an age of ca.620 Ma occurs mainly within the northern Yangtze Platform.In this study,a SIMS U-Pb age of ca.620 Ma was documented from continental rift volcanism within the adjacent South Qinling terrane.Its temporal overlap with WANCE suggests a possible causal link.Volcanism-induced seafloor uplift may have prompted DOC oxidation in surficial oxygenated oceans,inducing the occurrence of WANCE.展开更多
近年来,“全新世温度谜题”已经受到全球古气候学者的广泛关注,为了解决这一谜题,需要在全球不同区域进行更多的全新世温度重建。帕米尔高原位于亚洲内陆核心区域,目前有关帕米尔高原全新世气候变化的研究相对较少,且已有的研究主要集...近年来,“全新世温度谜题”已经受到全球古气候学者的广泛关注,为了解决这一谜题,需要在全球不同区域进行更多的全新世温度重建。帕米尔高原位于亚洲内陆核心区域,目前有关帕米尔高原全新世气候变化的研究相对较少,且已有的研究主要集中于相对湿度(或降水)变化的研究,而涉及温度变化的成果则相对较少。论文首先研究了表土碳同位素与气候因子之间的相关关系,结果显示帕米尔高原的δ^(13)C_(org)与温度正相关;进一步在7个AMS^(14)C测年数据的支持之下,基于175个泥炭δ^(13)C_(α-cellulose)分析,重建了帕米尔高原过去约5000 a的温度变化历史。结果发现:帕米尔高原晚全新世以来整体呈现波动升温趋势,约5000~3600 cal a BP阶段处于缓慢降温期;约3600~200 cal a BP处于波动升温期;驱动机制分析显示,约3600 cal a BP之前温度下降主要是夏季太阳辐射下降导致的,约3600 cal a BP之后温度上升是由温室气体辐射强迫增强导致的。展开更多
基金Supported by the National Natural Science Foundation of China(41472120)General Project of National Natural Science Foundation of China(42272188)+1 种基金Special Fund of PetroChina and New Energy Branch(2023YQX10101)Petrochemical Joint Fund of Fund Committee(U20B6001)。
文摘Exploration and development of large gas fields is an important way for a country to rapidly develop its natural gas industry.From 1991 to 2020,China discovered 68 new large gas fields,boosting its annual gas output to 1925×108m3in 2020,making it the fourth largest gas-producing country in the world.Based on 1696 molecular components and carbon isotopic composition data of alkane gas in 70 large gas fields in China,the characteristics of carbon isotopic composition of alkane gas in large gas fields in China were obtained.The lightest and average values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become heavier with increasing carbon number,while the heaviest values ofδ^(13)C_(1),δ13C2,δ13C3andδ13C4become lighter with increasing carbon number.Theδ^(13)C_(1)values of large gas fields in China range from-71.2‰to-11.4‰(specifically,from-71.2‰to-56.4‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-18.9‰for coal-derived gas,and from-35.6‰to-11.4‰for abiogenic gas).Based on these data,theδ^(13)C_(1)chart of large gas fields in China was plotted.Moreover,theδ^(13)C_(1)values of natural gas in China range from-107.1‰to-8.9‰,specifically,from-1071%o to-55.1‰for bacterial gas,from-54.4‰to-21.6‰for oil-related gas,from-49.3‰to-13.3‰for coal-derived gas,and from-36.2‰to-8.9‰for abiogenic gas.Based on these data,theδ^(13)C_(1)chart of natural gas in China was plotted.
基金National Natural Science Foundation of China (Grant Nos. 40471001 and 90411017)
文摘Multi-proxies of lacustrine sediments, such as total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), total sulfur (TS), hydrogen index (HI), oxygen index (OI) and stable carbon isotopic composition of organic matter (δ^(13)C_(org)), were analyzed using a 7.3 m core from Zige Tangco. The source of the organic matter in the sediment was mainly from autochthonous phyto-plankton, therefore the significances of proxies can be interpreted as that high TOC, TOC/TS, HI and δ^(13)C_(org) values, low TC, TIC values corresponded to warm and wet climatic condition, and vice versa. The process of climatic development in the Zige Tangco region was hence recovered. During the early and Mid-Holocene, the climate was warm and wet and intensive cold events occurred during the periods of 8600 to 8400 cal a BP and 7400 to 7000 cal a BP. In the second half of Holocene, the climate became cold and dry gradually. The palaeoclimatic process during Holocene in Zige Tangco region matched well with that in Co Ngoin region which is ca 40 km to the south-east. Therefore this palaeoclimatic process represents the Holocene climatic feature in the Central Tibetan Plateau which has the same pattern in the Northern Tibetan Plateau, but the time and duration of some climatic events might be different. We can conclude that in Holocene solar insolation controlled the climatic pattern on the central Tibetan Plateau.
基金supported by the National Natural Science Foundation of China(No.41673016)the State Key Laboratory of Lithospheric Evolution,Institute of Geology and Geophysics,Chinese Academy of Sciences(No.SKL-Z202001)+2 种基金the State Key Laboratory of Palaeobiology and Stratigraphy,Nanjing Institute of Geology and Palaeontology,Chinese Academy of Sciences(No.193112)the State Key Laboratory of Geological Processes and Mineral ResourcesChina University of Geosciences(No.GPMR201902)。
文摘Four carbonate carbon isotope(δ^(13)C_(carb))excursions are recognized in the Ediacaran Doushantuo Formation in South China,the genesis of which remains disputed.Whereas three of these δ^(13)C_(carb) excursions possibly record secular biogeochemical variations,the other one,namely Weng'an negative carbonate carbon isotope excursion(WANCE)with an age of ca.620 Ma occurs mainly within the northern Yangtze Platform.In this study,a SIMS U-Pb age of ca.620 Ma was documented from continental rift volcanism within the adjacent South Qinling terrane.Its temporal overlap with WANCE suggests a possible causal link.Volcanism-induced seafloor uplift may have prompted DOC oxidation in surficial oxygenated oceans,inducing the occurrence of WANCE.
文摘近年来,“全新世温度谜题”已经受到全球古气候学者的广泛关注,为了解决这一谜题,需要在全球不同区域进行更多的全新世温度重建。帕米尔高原位于亚洲内陆核心区域,目前有关帕米尔高原全新世气候变化的研究相对较少,且已有的研究主要集中于相对湿度(或降水)变化的研究,而涉及温度变化的成果则相对较少。论文首先研究了表土碳同位素与气候因子之间的相关关系,结果显示帕米尔高原的δ^(13)C_(org)与温度正相关;进一步在7个AMS^(14)C测年数据的支持之下,基于175个泥炭δ^(13)C_(α-cellulose)分析,重建了帕米尔高原过去约5000 a的温度变化历史。结果发现:帕米尔高原晚全新世以来整体呈现波动升温趋势,约5000~3600 cal a BP阶段处于缓慢降温期;约3600~200 cal a BP处于波动升温期;驱动机制分析显示,约3600 cal a BP之前温度下降主要是夏季太阳辐射下降导致的,约3600 cal a BP之后温度上升是由温室气体辐射强迫增强导致的。