Building a reasonable and accurate finite element model is the first and critical step for structural analysis of complicated bridge. In this article, modeling assistant for continuous suspension with multi-pylon is d...Building a reasonable and accurate finite element model is the first and critical step for structural analysis of complicated bridge. In this article, modeling assistant for continuous suspension with multi-pylon is developed based on .Net platform, with VB.Net, C# language and OpenGL graphic technique. With parameterized modeling method, finite element model of this kind of bridge can be built quickly and accurately, and multi-type element modeling with uniform parameters is realized. With advanced graphic technique, three-dimensional model graph can be real-timely previewed for intuitive data check. With an example of practice project, the accuracy and feasibility of this modeling method and practicality of this software are verified.展开更多
With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for dee...With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples.展开更多
A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile fini...A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment.展开更多
The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the ...The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the Runyang Cable-stayed Bridge,the daily variations as well as seasonal ones of measured temperature differences in the box girder cross-section area were summarized.The probability distribution models of temperature differences were further established and the extreme temperature differences were estimated with a return period of 100 years.Finally,the temperature difference models in cross-section area were proposed for bridge thermal design.The results show that horizontal temperature differences in top plate and vertical temperature differences between top plate and bottom plate are considerable.All the positive and negative temperature differences can be described by the weighted sum of two Weibull distributions.The maximum positive and negative horizontal temperature differences in top plate are 10.30 ℃ and -13.80 ℃,respectively.And the maximum positive and negative vertical temperature differences between top plate and bottom plate are 17.30 ℃ and-3.70 ℃,respectively.For bridge thermal design,there are two vertical temperature difference models between top plate and bottom plate,and six horizontal temperature difference models in top plate.展开更多
In this paper, we conduct research on the multidimensional constraint stability of bridge structure modeling based on the optimization model. The current internal and the external research results to the truss web str...In this paper, we conduct research on the multidimensional constraint stability of bridge structure modeling based on the optimization model. The current internal and the external research results to the truss web structure, the high internode the aspect ratio and the stiffness of the middle truss brace of the truss web, deffection of composite beams of the impact of stress is a very important problem in the design of the bridge. Structural health monitoring is the use of the field of the non-destructive sensing technology, including the structural response, including structural system characteristics analysis, to achieve the purpose of monitoring structural damage or degradation. Under this basis, this paper proposes the new idea on the modelling and simulates the performance.展开更多
A timely and accurate damage identification for bridge structures is essential to prevent sudden failures/collapses and other catastrophic accidents.Based on response surface model(RSM)updating and element modal strai...A timely and accurate damage identification for bridge structures is essential to prevent sudden failures/collapses and other catastrophic accidents.Based on response surface model(RSM)updating and element modal strain energy(EMSE)damage index,this paper proposes a novel damage identification method for girder bridge structures.The effectiveness of the proposed damage identification method is investigated using experiments on four simply supported steel beams.With Xiabaishi Bridge,a prestressed continuous rigid frame bridge with large span,as the engineering background,the proposed damage identification method is validated by using numerical simulation to generate different bearing damage scenarios.Finally,the efficiency of the method is justified by considering its application to identifying cracking damage for a real continuous beam bridge called Xinyihe Bridge.It is concluded that the EMSE damage index is sensitive to the cracking damage and the bearing damage.The locations and levels of multiple cracking damages and bearing damages can be also identified.The results illuminate a great potential of the proposed method in identifying damages of real bridge structures.展开更多
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)
文摘Building a reasonable and accurate finite element model is the first and critical step for structural analysis of complicated bridge. In this article, modeling assistant for continuous suspension with multi-pylon is developed based on .Net platform, with VB.Net, C# language and OpenGL graphic technique. With parameterized modeling method, finite element model of this kind of bridge can be built quickly and accurately, and multi-type element modeling with uniform parameters is realized. With advanced graphic technique, three-dimensional model graph can be real-timely previewed for intuitive data check. With an example of practice project, the accuracy and feasibility of this modeling method and practicality of this software are verified.
基金Project(50908082) supported by the National Natural Science Foundation of ChinaProject(2009ZK3111) supported by the Science and Technology Department of Hunan Province,China
文摘With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples.
基金Project(51178469) supported by the National Natural Science Foundation of China
文摘A proven beam-track contact model was used to analyze the track-structure interaction of CWR (continuously welded track) on bridge. Considering the impact of adjacent bridges, the tower-cable-track-beam-pier-pile finite element model of the cable-stayed bridge was established. Taking a bridge group including 40-32m simply-supported beam and (32+80+112)m single-tower cable-stayed bridge and 17-32m simply-supported beam on the Kunming-Shanghai high-speed railway as an example, the characteristics of CWR longitudinal force on the cable-stayed bridge were studied. It is shown that adjacent bridges must be considered in the calculation of the track expansion force and bending force on cable-stayed bridge. When the span amount of adjacent bridges is too numerous, it can be simplified as six spans; the fixed bearing of adjacent simply-supported beams should be placed on the side near the cable-stayed bridge; the track expansion device should be set at the bridge tower to reduce the track force near the bridge abutment.
基金Project(51178100)supported by the National Natural Science Foundation of ChinaProject(1105007001)supported by the Foundation of the Priority Academic Development Program of Higher Education Institute of Jiangsu Province,ChinaProject(3205001205)supported by the Teaching and Research Foundation for Excellent Young Teachers of Southeast University,China
文摘The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the Runyang Cable-stayed Bridge,the daily variations as well as seasonal ones of measured temperature differences in the box girder cross-section area were summarized.The probability distribution models of temperature differences were further established and the extreme temperature differences were estimated with a return period of 100 years.Finally,the temperature difference models in cross-section area were proposed for bridge thermal design.The results show that horizontal temperature differences in top plate and vertical temperature differences between top plate and bottom plate are considerable.All the positive and negative temperature differences can be described by the weighted sum of two Weibull distributions.The maximum positive and negative horizontal temperature differences in top plate are 10.30 ℃ and -13.80 ℃,respectively.And the maximum positive and negative vertical temperature differences between top plate and bottom plate are 17.30 ℃ and-3.70 ℃,respectively.For bridge thermal design,there are two vertical temperature difference models between top plate and bottom plate,and six horizontal temperature difference models in top plate.
文摘In this paper, we conduct research on the multidimensional constraint stability of bridge structure modeling based on the optimization model. The current internal and the external research results to the truss web structure, the high internode the aspect ratio and the stiffness of the middle truss brace of the truss web, deffection of composite beams of the impact of stress is a very important problem in the design of the bridge. Structural health monitoring is the use of the field of the non-destructive sensing technology, including the structural response, including structural system characteristics analysis, to achieve the purpose of monitoring structural damage or degradation. Under this basis, this paper proposes the new idea on the modelling and simulates the performance.
基金The National Natural Science Foundation of China(Grant Nos.51178101 and 51378112)The University Graduate Student Scientific Research Innovation Plan of Jiangsu Province(Grant No.CXZZ13_0109)China Scholarship Council under Program for Graduate Student Overseas Study Scholarship
文摘A timely and accurate damage identification for bridge structures is essential to prevent sudden failures/collapses and other catastrophic accidents.Based on response surface model(RSM)updating and element modal strain energy(EMSE)damage index,this paper proposes a novel damage identification method for girder bridge structures.The effectiveness of the proposed damage identification method is investigated using experiments on four simply supported steel beams.With Xiabaishi Bridge,a prestressed continuous rigid frame bridge with large span,as the engineering background,the proposed damage identification method is validated by using numerical simulation to generate different bearing damage scenarios.Finally,the efficiency of the method is justified by considering its application to identifying cracking damage for a real continuous beam bridge called Xinyihe Bridge.It is concluded that the EMSE damage index is sensitive to the cracking damage and the bearing damage.The locations and levels of multiple cracking damages and bearing damages can be also identified.The results illuminate a great potential of the proposed method in identifying damages of real bridge structures.