Microbial fuel cells have already been used as biosensors to monitor assimilable organic carbon(AOC).However,their signal production from AOC is known to be completely suppressed by dissoved oxygen(DO).In this study,t...Microbial fuel cells have already been used as biosensors to monitor assimilable organic carbon(AOC).However,their signal production from AOC is known to be completely suppressed by dissoved oxygen(DO).In this study,two identical microbial electrolysis cell(MEC)based biosensors were inoculated with marine sediment and operated at two different anodic potentials,namely-300 mV and+250 mV relative to Ag/AgCl.The MEC biosensor operated under positive anodic potential conditions had electrochemically active microbial communities on the anode,including members of the Shewanellaceae,Pseudoalteromonadaceae,and Clostridiaceae families.However,the strictly anaerobic members of the Desulfuromonadaceae,Desulfobulbaceae and Desulfobacteraceae families were found only in the negative anodic potential MEC biosensor.The positive anodic potential MEC biosensor showed several other advantages as well,such as faster start-up,significantly higher maximum current production,fivefold improvement in the AOC detection limit,and tolerance of low dissolved oxygen,compared to those obtained from the negative anodic potential MEC biosensor.The developed positive anodic potential MEC biosensor can thus be used as a real-time and inexpensive detector of AOC concentrations in high saline and low DO seawater.展开更多
Scirpus mariqueter Tang et Zhang is a typical pioneer plant colonizing the bare beaches of the Yangtse River estuary. To explore the life history strategy of the species with reference to environmental physical stre...Scirpus mariqueter Tang et Zhang is a typical pioneer plant colonizing the bare beaches of the Yangtse River estuary. To explore the life history strategy of the species with reference to environmental physical stress, the biomass allocations to different plant components and some related morphological parameters were examined along an elevational gradient within a salt marsh. Authors found that S. mariqueter performed best at medium elevation within the marsh, with relatively high density of shoot and individual ramet dry mass. Biomass allocation to corm was the highest at low elevations, and the least at high elevations, suggesting that a conservative strategy was adopted by the species to cope with the harsh physical conditions at the low elevation. The investment in rhizome decreased from low to high elevations, while the proportion of inflorescence mass increased, indicating that during the life history, the species shifts from predominant asexual reproduction to predominant sexual reproduction. This may be favourable for the species to colonize larger area, and to spread and persist at a meta_population level. Correlation analyses showed that sexual reproduction was inversely related to growth and asexual reproduction. However, it is difficult to determine the relationship between asexual reproduction and growth possibly because of the varied function of the corms of the species in different life history stages.展开更多
Three bacterial endophytes of Sedum alfredii, VI8L2, II8L4 and VI8R2, were examined for promoting soil Zn bioavailability and Zn accumulation in S. alfredii. Results showed that three strains were re-introduced into S...Three bacterial endophytes of Sedum alfredii, VI8L2, II8L4 and VI8R2, were examined for promoting soil Zn bioavailability and Zn accumulation in S. alfredii. Results showed that three strains were re-introduced into S. alfredii rhizosphere soils under Zn stress and resulted in better plant growth, as roots biomass increased from 80% to 525% and shoot biomass from 11% to 47% compared with the uninoculated ones. Strains IVsLz, II8L4 and IVsR2 significantly increased shoot and root Zn concentrations in the ZnCO3 contaminated soil. Inoculation with strain IVsL2 resulted in 44% and 39% higher shoot and root Zn concentrations, while strain IV8R2 significantly decreased shoot Zn concentration in the Zn3(PO4)2 contaminated soils. In the aged contaminated soil, isolates IVsL2, IIsL4 and IVsR2 significantly increased root Zn concentration, but decreased shoot Zn concentration of Sedum alfredii. It suggested that endophytes might be used for enhancing phytoextraction efficiency.展开更多
[ Objective ] The aim was to study the bioremediation mechanism of soil pollution. [ Method ] The effects of applying biological organic fertilizers on the bioremediation of soil pollution in orchard were studid by ex...[ Objective ] The aim was to study the bioremediation mechanism of soil pollution. [ Method ] The effects of applying biological organic fertilizers on the bioremediation of soil pollution in orchard were studid by experiment in orchard field and soil simulative experiment. [ Result] The biological organic fertilizers improved the activities of enzymes like polyphenol oxidase, urease, phosphatase, etc. in root-zone soil, promoted the passivation of heavy metals like Cd^2+ , Pb^2+ , Cr^3+ , As^8+ , etc. in root-zone soil, increased the quantities of useful active bacterium like beneficial fungi, actinomycetes, bacterium, etc. and decreased the quantities of harmful biology (like Fusarium oxysporum, Moniliophthora roreri, Ruselliniu necutrix/Helicobasidium mompa, nematode, etc. [ Conclusion] The study results provide some references for the popularization and application of biological organic fertilizers on fruit trees.展开更多
基金Zhenjiang City Key R&D Plan Modern Agriculture Project(No.SH2021017)Zhenjiang“Jinshan Talents”Project 2021Jiangsu Province“Six Talent Peak”Program(No.XCL-111)。
文摘Microbial fuel cells have already been used as biosensors to monitor assimilable organic carbon(AOC).However,their signal production from AOC is known to be completely suppressed by dissoved oxygen(DO).In this study,two identical microbial electrolysis cell(MEC)based biosensors were inoculated with marine sediment and operated at two different anodic potentials,namely-300 mV and+250 mV relative to Ag/AgCl.The MEC biosensor operated under positive anodic potential conditions had electrochemically active microbial communities on the anode,including members of the Shewanellaceae,Pseudoalteromonadaceae,and Clostridiaceae families.However,the strictly anaerobic members of the Desulfuromonadaceae,Desulfobulbaceae and Desulfobacteraceae families were found only in the negative anodic potential MEC biosensor.The positive anodic potential MEC biosensor showed several other advantages as well,such as faster start-up,significantly higher maximum current production,fivefold improvement in the AOC detection limit,and tolerance of low dissolved oxygen,compared to those obtained from the negative anodic potential MEC biosensor.The developed positive anodic potential MEC biosensor can thus be used as a real-time and inexpensive detector of AOC concentrations in high saline and low DO seawater.
文摘Scirpus mariqueter Tang et Zhang is a typical pioneer plant colonizing the bare beaches of the Yangtse River estuary. To explore the life history strategy of the species with reference to environmental physical stress, the biomass allocations to different plant components and some related morphological parameters were examined along an elevational gradient within a salt marsh. Authors found that S. mariqueter performed best at medium elevation within the marsh, with relatively high density of shoot and individual ramet dry mass. Biomass allocation to corm was the highest at low elevations, and the least at high elevations, suggesting that a conservative strategy was adopted by the species to cope with the harsh physical conditions at the low elevation. The investment in rhizome decreased from low to high elevations, while the proportion of inflorescence mass increased, indicating that during the life history, the species shifts from predominant asexual reproduction to predominant sexual reproduction. This may be favourable for the species to colonize larger area, and to spread and persist at a meta_population level. Correlation analyses showed that sexual reproduction was inversely related to growth and asexual reproduction. However, it is difficult to determine the relationship between asexual reproduction and growth possibly because of the varied function of the corms of the species in different life history stages.
基金Project(40973055) supported by the National Natural Science Foundation of ChinaProject(U0833004) supported by the NSFC-Guangdong Joint Foundation of China
文摘Three bacterial endophytes of Sedum alfredii, VI8L2, II8L4 and VI8R2, were examined for promoting soil Zn bioavailability and Zn accumulation in S. alfredii. Results showed that three strains were re-introduced into S. alfredii rhizosphere soils under Zn stress and resulted in better plant growth, as roots biomass increased from 80% to 525% and shoot biomass from 11% to 47% compared with the uninoculated ones. Strains IVsLz, II8L4 and IVsR2 significantly increased shoot and root Zn concentrations in the ZnCO3 contaminated soil. Inoculation with strain IVsL2 resulted in 44% and 39% higher shoot and root Zn concentrations, while strain IV8R2 significantly decreased shoot Zn concentration in the Zn3(PO4)2 contaminated soils. In the aged contaminated soil, isolates IVsL2, IIsL4 and IVsR2 significantly increased root Zn concentration, but decreased shoot Zn concentration of Sedum alfredii. It suggested that endophytes might be used for enhancing phytoextraction efficiency.
基金Supported by Natural Science Foundation of Liaoning Province(20082131)~~
文摘[ Objective ] The aim was to study the bioremediation mechanism of soil pollution. [ Method ] The effects of applying biological organic fertilizers on the bioremediation of soil pollution in orchard were studid by experiment in orchard field and soil simulative experiment. [ Result] The biological organic fertilizers improved the activities of enzymes like polyphenol oxidase, urease, phosphatase, etc. in root-zone soil, promoted the passivation of heavy metals like Cd^2+ , Pb^2+ , Cr^3+ , As^8+ , etc. in root-zone soil, increased the quantities of useful active bacterium like beneficial fungi, actinomycetes, bacterium, etc. and decreased the quantities of harmful biology (like Fusarium oxysporum, Moniliophthora roreri, Ruselliniu necutrix/Helicobasidium mompa, nematode, etc. [ Conclusion] The study results provide some references for the popularization and application of biological organic fertilizers on fruit trees.