Coupled with partial least squares(PLS),near infrared(NIR)spectroscopy was applied to develop a fast and nondestructive method to identify the production date of Rizhao green tea aiming at the deficiencies of the exis...Coupled with partial least squares(PLS),near infrared(NIR)spectroscopy was applied to develop a fast and nondestructive method to identify the production date of Rizhao green tea aiming at the deficiencies of the existing methods.In the modeling process,the raw spectra were first processed by five-point smoothing and first derivative.And then,moving window back propagation artificial neural network(MW-BP-ANN)was applied to select the characteristic spectral variables.After that,the calibration model was built by PLS,and the optimum model was achieved when 9 principal component scores(PCs)were included.The performances of the calibration models were evaluated according to root mean square error of predictionεRMSEP,correlation coefficient(C p)and residual prediction deviation(σRPD).The optimum results of the calibration model was achieved,andεRMSEP=19.965,C p=0.943 andσRPD=3.07.The overall results sufficiently demonstrate that NIR spectroscopy combined with PLS can be efficiently applied in the rapid identification of green tea production date.展开更多
In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-s...In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.展开更多
In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to...In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to-controller path and controller-to-actuator path. A weighted least squares(WLS) method is designed to estimate the parameters of plant, which could overcome the data uncertainty problem caused by delays and dropout. This WLS method is proved to be consistent and has a good asymptotic property. Simulation examples are given to validate the results.展开更多
The objective of this paper is to discuss the issue of the projection uniformity of asymmetric fractional factorials.On the basis of Lee discrepancy,the authors define the projection Lee discrepancy to measure the uni...The objective of this paper is to discuss the issue of the projection uniformity of asymmetric fractional factorials.On the basis of Lee discrepancy,the authors define the projection Lee discrepancy to measure the uniformity for low-dimensional projection designs.Moreover,the concepts of uniformity pattern and minimum projection uniformity criterion are proposed,which can be used to assess and compare two and three mixed levels factorials.Statistical justification of uniformity pattern is also investigated.展开更多
基金National Basic Research Program of China(No.JSJL2016210A001)State Key Laboratory of Sensor Technology Fund(No.SKT1507)
文摘Coupled with partial least squares(PLS),near infrared(NIR)spectroscopy was applied to develop a fast and nondestructive method to identify the production date of Rizhao green tea aiming at the deficiencies of the existing methods.In the modeling process,the raw spectra were first processed by five-point smoothing and first derivative.And then,moving window back propagation artificial neural network(MW-BP-ANN)was applied to select the characteristic spectral variables.After that,the calibration model was built by PLS,and the optimum model was achieved when 9 principal component scores(PCs)were included.The performances of the calibration models were evaluated according to root mean square error of predictionεRMSEP,correlation coefficient(C p)and residual prediction deviation(σRPD).The optimum results of the calibration model was achieved,andεRMSEP=19.965,C p=0.943 andσRPD=3.07.The overall results sufficiently demonstrate that NIR spectroscopy combined with PLS can be efficiently applied in the rapid identification of green tea production date.
基金Supported by the National Natural Science Foundation of China (No.60421002) and the New Century 151 Talent Project of Zhejiang Province.
文摘In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very diifficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modelingmethod are combined in this model. Data-driven modeling method based on limited memory partial least squares(LM-PLS) al.gorithm is used to build soft-senor models for some secondary variables.then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practicalprocess; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.
基金Supported by the National Natural Science Foundation of China(61290324)
文摘In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to-controller path and controller-to-actuator path. A weighted least squares(WLS) method is designed to estimate the parameters of plant, which could overcome the data uncertainty problem caused by delays and dropout. This WLS method is proved to be consistent and has a good asymptotic property. Simulation examples are given to validate the results.
基金supported by the National Natural Science Foundations of China under Grant Nos.11271147 and 11401596
文摘The objective of this paper is to discuss the issue of the projection uniformity of asymmetric fractional factorials.On the basis of Lee discrepancy,the authors define the projection Lee discrepancy to measure the uniformity for low-dimensional projection designs.Moreover,the concepts of uniformity pattern and minimum projection uniformity criterion are proposed,which can be used to assess and compare two and three mixed levels factorials.Statistical justification of uniformity pattern is also investigated.