A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compres...A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compressive plastic deformation, were taken into account in this model, These two deformation mechanisms were described by the shear and compressive yield functions, respectively. The Lode angle dependent formulations of proposed model were deduced by incorporating a 3D nonlinear unified failure criterion. Some comparisons were presented between the numerical predictions of proposed model and test data of true triaxial tests on the modeled rockfills. The model predictions are in good agreement with the test data and capture the strain hardening and plastic volumetric dilation of CGMs. These findings verify the reasonability of current DYS model, and indicate that this model is well suited to reproduce the stress-strain-volume change behavior of CGMs in general.展开更多
A bounding surface model incorporating a unified nonlinear strength criterion is proposed.The proposed bounding surface model contains 9 model parameters,which can be determined from the conventional triaxial tests.Th...A bounding surface model incorporating a unified nonlinear strength criterion is proposed.The proposed bounding surface model contains 9 model parameters,which can be determined from the conventional triaxial tests.The bounding surface model can reproduce such behaviours as the strain hardening,the post-peak strain softening,and the volumetric strain contraction and expansion.Based on the comparisons between the predictions and the test results,the proposed strength criterion and model can well reproduce the experimental results of the strength and stress-strain behaviours of rockfill material in three-dimensional stress space.The strength behaviour of rockfill material is summarized as:(a) the failure stress ratio decreases with the initial confining pressure on the meridian plane;(b) the failure deviatoric stress decreases with the Lode angle from 0o to 60o on the deviatoric plane.The stress ratio decreases with increasing one of such factors as the initial void ratio,the intermediate principal stress ratio and the minor principal stress at the same strain when the other factors are given.展开更多
基金Project(50825901)supported by the National Natural Science Foundation for Distinguished Young Scholar of ChinaProject(2009492011)supported by State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Nanjing Hydraulic Research Institute,China+1 种基金Project(GH200903)supported by Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering(Hohai University),ChinaProject(Y1090151)supported by Natural Science Foundation of Zhejiang Province,China
文摘A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compressive plastic deformation, were taken into account in this model, These two deformation mechanisms were described by the shear and compressive yield functions, respectively. The Lode angle dependent formulations of proposed model were deduced by incorporating a 3D nonlinear unified failure criterion. Some comparisons were presented between the numerical predictions of proposed model and test data of true triaxial tests on the modeled rockfills. The model predictions are in good agreement with the test data and capture the strain hardening and plastic volumetric dilation of CGMs. These findings verify the reasonability of current DYS model, and indicate that this model is well suited to reproduce the stress-strain-volume change behavior of CGMs in general.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholar (Grant No. 50825901)the Public Service Sector R&D Project of Ministry of Water Resource of China(Grant No. 200801014)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 2011B14514)Jiangsu Civil Engineering Graduate Center for Innovation and Academic Communication Foundation
文摘A bounding surface model incorporating a unified nonlinear strength criterion is proposed.The proposed bounding surface model contains 9 model parameters,which can be determined from the conventional triaxial tests.The bounding surface model can reproduce such behaviours as the strain hardening,the post-peak strain softening,and the volumetric strain contraction and expansion.Based on the comparisons between the predictions and the test results,the proposed strength criterion and model can well reproduce the experimental results of the strength and stress-strain behaviours of rockfill material in three-dimensional stress space.The strength behaviour of rockfill material is summarized as:(a) the failure stress ratio decreases with the initial confining pressure on the meridian plane;(b) the failure deviatoric stress decreases with the Lode angle from 0o to 60o on the deviatoric plane.The stress ratio decreases with increasing one of such factors as the initial void ratio,the intermediate principal stress ratio and the minor principal stress at the same strain when the other factors are given.