This paper develops delay-independent fuzzy hyperbolic guaranteed cost control for nonlinear continuous-time systems with parameter uncertainties. Fuzzy hyperbolic model (FHM) can be used to establish the model for ce...This paper develops delay-independent fuzzy hyperbolic guaranteed cost control for nonlinear continuous-time systems with parameter uncertainties. Fuzzy hyperbolic model (FHM) can be used to establish the model for certain unknown complex system. The main advantage of using FHM over Takagi-Sugeno (T-S) fuzzy model is that no premise structure identification is needed and no completeness design of premise variables space is needed. In addition, an FHM is not only a kind of valid global description but also a kind of nonlinear model in nature. A nonlinear quadratic cost function is developed as a performance measurement of the closed-loop fuzzy system based on FHM.Based on delay-independent Lyapunov functional approach, some sufficient conditions for the existence of such a fuzzy hyperbolic guaranteed cost controller via state feedback are provided. These conditions are given in terms of the feasibility of linear matrix inequalities (LMIs). A simulation example is provided to illustrate the design procedure of the proposed method.展开更多
The new chaos control method presented in this paper is useful for taking advantage of chaos.Based on sliding mode control theory, this paper provides a switching manifold controlling strategy of chaoticsystem, and...The new chaos control method presented in this paper is useful for taking advantage of chaos.Based on sliding mode control theory, this paper provides a switching manifold controlling strategy of chaoticsystem, and also gives a kind of adaptive parameters estimated method to estimate the unknown systems' pa-rameters by which chaotic dynamical system can be synchronized. Taking the Lorenz system as example, and with the help of this controlling strategy, we can synchronize chaotic systems with unknown parameters and different initial conditions.展开更多
A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-ti...A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-time system with time-varying delay. Sufficient conditions were then established based on the constructed Lyapunov-Krasovskii functional, which guarantee that the system is mean-square exponentially stable with H∞ performance. The desired controller can be obtained by solving the obtained conditions. Simulation results show that guaranteed minimum H∞ performance γ=1.4037 and fast response of attitude for sampled-data autonomous airship are achieved in spite of the existence of parameter uncertainties.展开更多
To control continuous-time uncertain dynamical systems with sampled data-feedback is prevalent today,but the sampling rate is usually not allowed to be arbitrarily fast due to various physical and/or computational con...To control continuous-time uncertain dynamical systems with sampled data-feedback is prevalent today,but the sampling rate is usually not allowed to be arbitrarily fast due to various physical and/or computational constrains.In this paper,the authors examine the limitations of sampled-data feedback control for a class of uncertain systems in continuous-time,with sampling rate not necessary fast enough and with the unknown system structure confined to a set of functions with both linear and nonlinear growth.The limitations of the sampled-data feedback control for the uncertain systems are established quantitatively,which extends the existing related results in the literature.展开更多
The authors concern robust model predictive control for linear continuous systems with polytopic uncertainties and input constraints. At each sampling time, a piecewise constant control sequence is obtained by solving...The authors concern robust model predictive control for linear continuous systems with polytopic uncertainties and input constraints. At each sampling time, a piecewise constant control sequence is obtained by solving a set of linear matrix inequalities. The sufficient conditions on the existence of the model predictive control are given, and the robust stability of the closed-loop systems is guaranteed. A simulation example illustrates the efficiency of the proposed method.展开更多
文摘This paper develops delay-independent fuzzy hyperbolic guaranteed cost control for nonlinear continuous-time systems with parameter uncertainties. Fuzzy hyperbolic model (FHM) can be used to establish the model for certain unknown complex system. The main advantage of using FHM over Takagi-Sugeno (T-S) fuzzy model is that no premise structure identification is needed and no completeness design of premise variables space is needed. In addition, an FHM is not only a kind of valid global description but also a kind of nonlinear model in nature. A nonlinear quadratic cost function is developed as a performance measurement of the closed-loop fuzzy system based on FHM.Based on delay-independent Lyapunov functional approach, some sufficient conditions for the existence of such a fuzzy hyperbolic guaranteed cost controller via state feedback are provided. These conditions are given in terms of the feasibility of linear matrix inequalities (LMIs). A simulation example is provided to illustrate the design procedure of the proposed method.
文摘The new chaos control method presented in this paper is useful for taking advantage of chaos.Based on sliding mode control theory, this paper provides a switching manifold controlling strategy of chaoticsystem, and also gives a kind of adaptive parameters estimated method to estimate the unknown systems' pa-rameters by which chaotic dynamical system can be synchronized. Taking the Lorenz system as example, and with the help of this controlling strategy, we can synchronize chaotic systems with unknown parameters and different initial conditions.
基金Projects(51205253,11272205)supported by the National Natural Science Foundation of ChinaProject(2012AA7052005)supported by the National High Technology Research and Development Program of China
文摘A robust H∞ directional controller for a sampled-data autonomous airship with polytopic parameter uncertainties was proposed. By input delay approach, the linearized airship model was transformed into a continuous-time system with time-varying delay. Sufficient conditions were then established based on the constructed Lyapunov-Krasovskii functional, which guarantee that the system is mean-square exponentially stable with H∞ performance. The desired controller can be obtained by solving the obtained conditions. Simulation results show that guaranteed minimum H∞ performance γ=1.4037 and fast response of attitude for sampled-data autonomous airship are achieved in spite of the existence of parameter uncertainties.
基金supported by National Natural Science Foundation of China under Grant No.11271339New Century Excellent Talents Program under Grant No.10-0141
文摘To control continuous-time uncertain dynamical systems with sampled data-feedback is prevalent today,but the sampling rate is usually not allowed to be arbitrarily fast due to various physical and/or computational constrains.In this paper,the authors examine the limitations of sampled-data feedback control for a class of uncertain systems in continuous-time,with sampling rate not necessary fast enough and with the unknown system structure confined to a set of functions with both linear and nonlinear growth.The limitations of the sampled-data feedback control for the uncertain systems are established quantitatively,which extends the existing related results in the literature.
基金This research is supported by the National Natural Science Foundation of China under Grant No.60774016.
文摘The authors concern robust model predictive control for linear continuous systems with polytopic uncertainties and input constraints. At each sampling time, a piecewise constant control sequence is obtained by solving a set of linear matrix inequalities. The sufficient conditions on the existence of the model predictive control are given, and the robust stability of the closed-loop systems is guaranteed. A simulation example illustrates the efficiency of the proposed method.