Based on isentropic flow and thermal equilibrium assumptions, a model was derived to calculate discharge flow rate, which unified the rules of room temperature water discharge, high temperature and high pressure water...Based on isentropic flow and thermal equilibrium assumptions, a model was derived to calculate discharge flow rate, which unified the rules of room temperature water discharge, high temperature and high pressure water discharge, two-phase critical flow, saturated steam and superheated steam critical flow, and gave a method to calculate critical condition. Because of the influence of friction, the entropy is increased in the actual discharge process, and the discharge flow rate in thermal equilibrium condition can be obtained by the original model multiplied by an appropriate correction coefficient. The model calculated results agreed well with the experiment data of long nozzle critical flow.展开更多
Many researches on critical nozzles have been performed to accurately measure the mass flow rate of gas flow,and to standardize the performance as a flow meter.Recently,much interest is being paid on the measurement o...Many researches on critical nozzles have been performed to accurately measure the mass flow rate of gas flow,and to standardize the performance as a flow meter.Recently,much interest is being paid on the measurement of very small mass flow rate in industry fields such as MEMS applications.However,the design and performance data of the critical nozzles obtained so far have been applied mainly to the critical nozzles with comparatively large diameters,and the works available on miniature critical nozzles are lacking.In the present study,a computational fluid dynamics method has been applied to investigate the influence of the diffuser angle on discharge coefficient of the miniature critical nozzles.In computations,the throat diameter of critical nozzle is varied from 0.2 mm to 5.0 mm and the diffuser angle is changed from 2 deg to 8 deg.The computational results are validated with some experimental data available.The results show that the present computational results predict appropriately the discharge coefficient of the gas flows through miniature critical nozzles.It is known that the discharge coefficient is considerably influenced by the diffuser angle,as the throat diameter of nozzle becomes small below a certain value.This implies that the miniature critical nozzles should be carefully designed.展开更多
文摘Based on isentropic flow and thermal equilibrium assumptions, a model was derived to calculate discharge flow rate, which unified the rules of room temperature water discharge, high temperature and high pressure water discharge, two-phase critical flow, saturated steam and superheated steam critical flow, and gave a method to calculate critical condition. Because of the influence of friction, the entropy is increased in the actual discharge process, and the discharge flow rate in thermal equilibrium condition can be obtained by the original model multiplied by an appropriate correction coefficient. The model calculated results agreed well with the experiment data of long nozzle critical flow.
文摘Many researches on critical nozzles have been performed to accurately measure the mass flow rate of gas flow,and to standardize the performance as a flow meter.Recently,much interest is being paid on the measurement of very small mass flow rate in industry fields such as MEMS applications.However,the design and performance data of the critical nozzles obtained so far have been applied mainly to the critical nozzles with comparatively large diameters,and the works available on miniature critical nozzles are lacking.In the present study,a computational fluid dynamics method has been applied to investigate the influence of the diffuser angle on discharge coefficient of the miniature critical nozzles.In computations,the throat diameter of critical nozzle is varied from 0.2 mm to 5.0 mm and the diffuser angle is changed from 2 deg to 8 deg.The computational results are validated with some experimental data available.The results show that the present computational results predict appropriately the discharge coefficient of the gas flows through miniature critical nozzles.It is known that the discharge coefficient is considerably influenced by the diffuser angle,as the throat diameter of nozzle becomes small below a certain value.This implies that the miniature critical nozzles should be carefully designed.