This study reveals that the interaction between a 2D material and its substrate can significantly modify its electronic and optical properties, and thus can be used as a means to optimize these properties. High-temper...This study reveals that the interaction between a 2D material and its substrate can significantly modify its electronic and optical properties, and thus can be used as a means to optimize these properties. High-temperature (25-500℃) optical spectroscopy, which combines Raman and photoluminescence spectroscopies, is highly effective for investigating the interaction and material properties that are not accessible at the commonly used cryogenic temperature (e.g., a thermal activation process with an activation of a major fraction of the bandgap). This study investigates a set of monolayer WS2 films, either directly grown on sapphire and SiO2 substrates by CVD or transferred onto SiO2 substrate. The coupling with the substrate is shown to depend on the substrate type, the material- substrate bonding (even for the same substrate), and the excitation wavelength. The inherent difference in the states of strain between the as-grown and the transferred films has a significant impact on the material properties.展开更多
Graphene on dielectric substrates is essential for its electronic applications. Graphene is typically synthesized on the surface of metal and then transferred to an appropriate substrate for fabricating device applica...Graphene on dielectric substrates is essential for its electronic applications. Graphene is typically synthesized on the surface of metal and then transferred to an appropriate substrate for fabricating device applications. This post growth transfer process is detrimental to the quality and performance of the as-grown graphene. Therefore, direct growth of graphene films on dielectric substrates without any transfer process is highly desirable. However, fast growth of graphene on dielectric substrates remains challenging. Here, we demonstrate a transfer-free chemical vapor deposition (CVD) method to directly grow graphene films on dielectric substrates at fast growth rate using Cu as floating catalyst. A large area (centimeter level) graphene can be grown within 15 min using this CVD method, which is increased by 500 times compared to other direct CVD growth on dielectric substrate in the literatures. This research presents a significant progress in transfer-free growth of graphene and graphene device applications.展开更多
文摘This study reveals that the interaction between a 2D material and its substrate can significantly modify its electronic and optical properties, and thus can be used as a means to optimize these properties. High-temperature (25-500℃) optical spectroscopy, which combines Raman and photoluminescence spectroscopies, is highly effective for investigating the interaction and material properties that are not accessible at the commonly used cryogenic temperature (e.g., a thermal activation process with an activation of a major fraction of the bandgap). This study investigates a set of monolayer WS2 films, either directly grown on sapphire and SiO2 substrates by CVD or transferred onto SiO2 substrate. The coupling with the substrate is shown to depend on the substrate type, the material- substrate bonding (even for the same substrate), and the excitation wavelength. The inherent difference in the states of strain between the as-grown and the transferred films has a significant impact on the material properties.
基金supported by the National Natural Science Foundation of China (61390502, 51502059, 61172001, 21373068)the National Basic Research Program of China (2013CB632900)+3 种基金the Foundational Research Funds for the Central Universities (HIT. NSRIF.201641)Self-Planned Task (SKLRS201509B) of State Key Laboratory of Robotics and System (HIT)China Postdoctoral Science Foundation Grant (2015M570285)Heilongjiang Provincial Postdoctoral Science Foundation Grant (LBH-Z15053)
文摘Graphene on dielectric substrates is essential for its electronic applications. Graphene is typically synthesized on the surface of metal and then transferred to an appropriate substrate for fabricating device applications. This post growth transfer process is detrimental to the quality and performance of the as-grown graphene. Therefore, direct growth of graphene films on dielectric substrates without any transfer process is highly desirable. However, fast growth of graphene on dielectric substrates remains challenging. Here, we demonstrate a transfer-free chemical vapor deposition (CVD) method to directly grow graphene films on dielectric substrates at fast growth rate using Cu as floating catalyst. A large area (centimeter level) graphene can be grown within 15 min using this CVD method, which is increased by 500 times compared to other direct CVD growth on dielectric substrate in the literatures. This research presents a significant progress in transfer-free growth of graphene and graphene device applications.