本文基于密度泛函理论(DFT)的第一性原理计算了W、Mn、V、Ti替位掺杂二维MoSi_(2)N_(4)后的几何结构、电子结构以及光学性质的变化.电子结构分析表明W、Mn、W、Ti替位掺杂二维MoSi_(2)N_(4)后的禁带宽度分别为1.806 e V、1.003 e V、1.2...本文基于密度泛函理论(DFT)的第一性原理计算了W、Mn、V、Ti替位掺杂二维MoSi_(2)N_(4)后的几何结构、电子结构以及光学性质的变化.电子结构分析表明W、Mn、W、Ti替位掺杂二维MoSi_(2)N_(4)后的禁带宽度分别为1.806 e V、1.003 e V、1.218 e V和1.373 e V;四种过渡金属掺杂后MoSi_(2)N_(4)的带隙类型没有发生改变,均为间接带隙半导体;W掺杂后的杂质能级靠近价带顶,费米能级靠近价带顶,为p型半导体,杂质能级为受主能级;Mn掺杂后的杂质能级靠近导带底,费米能级靠近导带底,为n型半导体;V和Ti掺杂后杂质能级位于费米能级附近,为复合中心;光学性质分析表明,在2 e V~4 e V的能量区间内,W掺杂结构的吸收波长为336 nm,体系发生红移;Mn、V和Ti替位掺杂后的吸收波长分别为320 nm、358 nm和338 nm,且掺杂体系均发生蓝移.展开更多
Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the ele...Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene(Gr)heterostructure using first-principles calculation.We find that four types of defective structures,N-in,N-out,Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air.Moreover,vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure.Finally,the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts.Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures.展开更多
A novel one-dimensional chain complex [Zn(dafo)2(H2O)2](NO3)2 was synthesized. It has been characterized by IR, UV, TGA, Elemental analysis and X-ray diffraction analysis. The crystal belongs to triclinic system, P1 s...A novel one-dimensional chain complex [Zn(dafo)2(H2O)2](NO3)2 was synthesized. It has been characterized by IR, UV, TGA, Elemental analysis and X-ray diffraction analysis. The crystal belongs to triclinic system, P1 space group. The Crystallographic data are: a = 0.702 7(14) nm, b = 0.828 95(17) nm, c = 10.225(2) nm, α = 95.02(3)°, β = 91.45(3)°, γ = 99.85(3)°. The crystal structure data indicate that the Zn(Ⅱ) ion was coordinated with the four nitrogen atoms of two dafo and two oxygen atoms of two coordination water molecules, respectively. The complex has a one-dimensional chain structure, which is formed by hydrogen bonds.展开更多
Experimentally synthesized MoSi_(2)N_(4)(Science 369 670(2020)) is a piezoelectric semiconductor. Here, we systematically study the large biaxial(isotropic) strain effects(0.90–1.10) on electronic structures and tran...Experimentally synthesized MoSi_(2)N_(4)(Science 369 670(2020)) is a piezoelectric semiconductor. Here, we systematically study the large biaxial(isotropic) strain effects(0.90–1.10) on electronic structures and transport coefficients of monolayer MoSi_(2)N_(4) by density functional theory(DFT). With a/a0 from 0.90 to 1.10, the energy band gap firstly increases, and then decreases, which is due to transformation of conduction band minimum(CBM). Calculated results show that the MoSi_(2)N_(4) monolayer is mechanically stable in the considered strain range. It is found that the spin-orbital coupling(SOC) effects on Seebeck coefficient depend on the strain. In unstrained MoSi_(2)N_(4), the SOC has neglected influence on Seebeck coefficient. However, the SOC can produce important influence on Seebeck coefficient, when the strain is applied,for example, 0.96 strain. The compressive strain can change relative position and numbers of conduction band extrema(CBE), and then the strength of conduction bands convergence can be enhanced, to the benefit of n-type ZT_e. Only about0.96 strain can effectively improve n-type ZT_e. Our works imply that strain can effectively tune the electronic structures and transport coefficients of monolayer MoSi_(2)N_(4), and can motivate farther experimental exploration.展开更多
3,5-di(2-pyrazinyl)-4-amino-1,2,4-triazole(II) was synthesized through hydrothermal reaction,and the crystal structure was determined by X-ray crystallography.Crystalline was assigned into triclinic system with space ...3,5-di(2-pyrazinyl)-4-amino-1,2,4-triazole(II) was synthesized through hydrothermal reaction,and the crystal structure was determined by X-ray crystallography.Crystalline was assigned into triclinic system with space group P-1,lattice parameters a=0.62527(2) nm,b=0.6807(2) nm,c=1.2792(4) nm,α=85.833(5)o,β=80.517(5)o,γ=72.405(5)°,V=0.5118(3) nm3,and Z=2.Intermolecular hydrogen bonds extend the molecules of compound(II) into a 2D supramolecular layer.CCDC:666956.展开更多
文摘本文基于密度泛函理论(DFT)的第一性原理计算了W、Mn、V、Ti替位掺杂二维MoSi_(2)N_(4)后的几何结构、电子结构以及光学性质的变化.电子结构分析表明W、Mn、W、Ti替位掺杂二维MoSi_(2)N_(4)后的禁带宽度分别为1.806 e V、1.003 e V、1.218 e V和1.373 e V;四种过渡金属掺杂后MoSi_(2)N_(4)的带隙类型没有发生改变,均为间接带隙半导体;W掺杂后的杂质能级靠近价带顶,费米能级靠近价带顶,为p型半导体,杂质能级为受主能级;Mn掺杂后的杂质能级靠近导带底,费米能级靠近导带底,为n型半导体;V和Ti掺杂后杂质能级位于费米能级附近,为复合中心;光学性质分析表明,在2 e V~4 e V的能量区间内,W掺杂结构的吸收波长为336 nm,体系发生红移;Mn、V和Ti替位掺杂后的吸收波长分别为320 nm、358 nm和338 nm,且掺杂体系均发生蓝移.
基金Project supported by the Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University(Grant No.2020-520000-83-01-324061)the National Natural Science Foundation of China(Grant No.61264004)the High-level Creative Talent Training Program in Guizhou Province of China(Grant No.[2015]4015).
文摘Recently,the newly synthesized septuple-atomic layer two-dimensional(2D)material MoSi_(2)N_(4)(MSN)has attracted attention worldwide.Our work delves into the effect of vacancies and external electric fields on the electronic properties of the MSN/graphene(Gr)heterostructure using first-principles calculation.We find that four types of defective structures,N-in,N-out,Si and Mo vacancy defects of monolayer MSN and MSN/Gr heterostructure are stable in air.Moreover,vacancy defects can effectively modulate the charge transfer at the interface of the MSN/Gr heterostructure as well as the work function of the pristine monolayer MSN and MSN/Gr heterostructure.Finally,the application of an external electric field enables the dynamic switching between n-type and p-type Schottky contacts.Our work may offer the possibility of exceeding the capabilities of conventional Schottky diodes based on MSN/Gr heterostructures.
文摘A novel one-dimensional chain complex [Zn(dafo)2(H2O)2](NO3)2 was synthesized. It has been characterized by IR, UV, TGA, Elemental analysis and X-ray diffraction analysis. The crystal belongs to triclinic system, P1 space group. The Crystallographic data are: a = 0.702 7(14) nm, b = 0.828 95(17) nm, c = 10.225(2) nm, α = 95.02(3)°, β = 91.45(3)°, γ = 99.85(3)°. The crystal structure data indicate that the Zn(Ⅱ) ion was coordinated with the four nitrogen atoms of two dafo and two oxygen atoms of two coordination water molecules, respectively. The complex has a one-dimensional chain structure, which is formed by hydrogen bonds.
基金supported by the Natural Science Basis Research Plan in Shaanxi Province of China (Grant No. 2021JM-456)。
文摘Experimentally synthesized MoSi_(2)N_(4)(Science 369 670(2020)) is a piezoelectric semiconductor. Here, we systematically study the large biaxial(isotropic) strain effects(0.90–1.10) on electronic structures and transport coefficients of monolayer MoSi_(2)N_(4) by density functional theory(DFT). With a/a0 from 0.90 to 1.10, the energy band gap firstly increases, and then decreases, which is due to transformation of conduction band minimum(CBM). Calculated results show that the MoSi_(2)N_(4) monolayer is mechanically stable in the considered strain range. It is found that the spin-orbital coupling(SOC) effects on Seebeck coefficient depend on the strain. In unstrained MoSi_(2)N_(4), the SOC has neglected influence on Seebeck coefficient. However, the SOC can produce important influence on Seebeck coefficient, when the strain is applied,for example, 0.96 strain. The compressive strain can change relative position and numbers of conduction band extrema(CBE), and then the strength of conduction bands convergence can be enhanced, to the benefit of n-type ZT_e. Only about0.96 strain can effectively improve n-type ZT_e. Our works imply that strain can effectively tune the electronic structures and transport coefficients of monolayer MoSi_(2)N_(4), and can motivate farther experimental exploration.
文摘3,5-di(2-pyrazinyl)-4-amino-1,2,4-triazole(II) was synthesized through hydrothermal reaction,and the crystal structure was determined by X-ray crystallography.Crystalline was assigned into triclinic system with space group P-1,lattice parameters a=0.62527(2) nm,b=0.6807(2) nm,c=1.2792(4) nm,α=85.833(5)o,β=80.517(5)o,γ=72.405(5)°,V=0.5118(3) nm3,and Z=2.Intermolecular hydrogen bonds extend the molecules of compound(II) into a 2D supramolecular layer.CCDC:666956.