针对云服务器中存在软件老化现象,将造成系统性能衰退与可靠性下降问题,借鉴剩余使用寿命(Remaining useful life,RUL)概念,提出基于支持向量和高斯函数拟合(Support vectors and Gaussian function fitting,SVs-GFF)的老化预测方法.首...针对云服务器中存在软件老化现象,将造成系统性能衰退与可靠性下降问题,借鉴剩余使用寿命(Remaining useful life,RUL)概念,提出基于支持向量和高斯函数拟合(Support vectors and Gaussian function fitting,SVs-GFF)的老化预测方法.首先,提取云服务器老化数据的统计特征指标,并采用支持向量回归(Support vector regression,SVR)对统计特征指标进行数据稀疏化处理,得到支持向量(Support vectors,SVs)序列数据;然后,建立基于密度聚类的高斯函数拟合(Gaussian function fitting,GFF)模型,对不同核函数下的支持向量序列数据进行老化曲线拟合,并采用Fréchet距离优化算法选取最优老化曲线;最后,基于最优老化曲线,评估系统到达老化阈值前的RUL,以预测系统何时发生老化.在OpenStack云服务器4个老化数据集上的实验结果表明,基于RUL和SVs-GFF的云服务器老化预测方法与传统预测方法相比,具有更高的预测精度和更快的收敛速度.展开更多
随着云计算技术的普及,云服务数量指数级增长,用户不再满足于功能性需求,服务质量(Quality of Service,QoS)成为比较服务优劣的关键性能指标.如何在动态、复杂的云环境中实时、准确地预测服务质量并为用户推荐高质量服务成为热点问题....随着云计算技术的普及,云服务数量指数级增长,用户不再满足于功能性需求,服务质量(Quality of Service,QoS)成为比较服务优劣的关键性能指标.如何在动态、复杂的云环境中实时、准确地预测服务质量并为用户推荐高质量服务成为热点问题.考虑到云服务器的负载、网络状态、用户接入云环境的偏好等随着时间变化,本文提出了基于多源特征和多任务学习的时序QoS预测方法(T-MST),它可以实时、准确地同时预测多种QoS属性.首先,TMST对用户、服务进行特征表示,通过Time2Vec刻画时序特征,再结合多种QoS属性的历史记录生成多源特征表示.其次,基于滑动窗口采用LSTM感知窗口内的时序关系,借助注意力机制细化窗口内不同时刻的关键性,从而构造待预测时刻的隐藏状态.最后,T-MST采用多任务预测层实现多种QoS属性的同时预测,它们共享上游模型,仅在预测层采用不同的感知模块以提升模型的鲁棒性和计算效率.本文基于真实世界的数据集进行了全面的实验验证,结果表明T-MST在吞吐量和响应时间的时序预测任务上平均绝对误差(Mean Absolute Error,MAE)分别平均提升了37.53%和20.38%,优于现有的时序QoS预测方法;而且TMST的计算效率更高,能够有效应对实时QoS预测的需求.展开更多
文摘针对云服务器中存在软件老化现象,将造成系统性能衰退与可靠性下降问题,借鉴剩余使用寿命(Remaining useful life,RUL)概念,提出基于支持向量和高斯函数拟合(Support vectors and Gaussian function fitting,SVs-GFF)的老化预测方法.首先,提取云服务器老化数据的统计特征指标,并采用支持向量回归(Support vector regression,SVR)对统计特征指标进行数据稀疏化处理,得到支持向量(Support vectors,SVs)序列数据;然后,建立基于密度聚类的高斯函数拟合(Gaussian function fitting,GFF)模型,对不同核函数下的支持向量序列数据进行老化曲线拟合,并采用Fréchet距离优化算法选取最优老化曲线;最后,基于最优老化曲线,评估系统到达老化阈值前的RUL,以预测系统何时发生老化.在OpenStack云服务器4个老化数据集上的实验结果表明,基于RUL和SVs-GFF的云服务器老化预测方法与传统预测方法相比,具有更高的预测精度和更快的收敛速度.
文摘随着云计算技术的普及,云服务数量指数级增长,用户不再满足于功能性需求,服务质量(Quality of Service,QoS)成为比较服务优劣的关键性能指标.如何在动态、复杂的云环境中实时、准确地预测服务质量并为用户推荐高质量服务成为热点问题.考虑到云服务器的负载、网络状态、用户接入云环境的偏好等随着时间变化,本文提出了基于多源特征和多任务学习的时序QoS预测方法(T-MST),它可以实时、准确地同时预测多种QoS属性.首先,TMST对用户、服务进行特征表示,通过Time2Vec刻画时序特征,再结合多种QoS属性的历史记录生成多源特征表示.其次,基于滑动窗口采用LSTM感知窗口内的时序关系,借助注意力机制细化窗口内不同时刻的关键性,从而构造待预测时刻的隐藏状态.最后,T-MST采用多任务预测层实现多种QoS属性的同时预测,它们共享上游模型,仅在预测层采用不同的感知模块以提升模型的鲁棒性和计算效率.本文基于真实世界的数据集进行了全面的实验验证,结果表明T-MST在吞吐量和响应时间的时序预测任务上平均绝对误差(Mean Absolute Error,MAE)分别平均提升了37.53%和20.38%,优于现有的时序QoS预测方法;而且TMST的计算效率更高,能够有效应对实时QoS预测的需求.