针对动态主元分析方法中残差自相关性降低过程故障检测率问题,提出基于动态主元分析残差互异度的故障检测与诊断方法.首先,应用动态主元分析(Dynamic principal component analysis,DPCA)计算动态过程数据的残差得分;接下来,应用滑动窗...针对动态主元分析方法中残差自相关性降低过程故障检测率问题,提出基于动态主元分析残差互异度的故障检测与诊断方法.首先,应用动态主元分析(Dynamic principal component analysis,DPCA)计算动态过程数据的残差得分;接下来,应用滑动窗口技术并结合互异度指标(Dissimilarity)来监控过程残差得分状态;最后,利用基于变量贡献图的方法进行过程故障诊断分析.本文方法通过DPCA捕获过程的动态特征,同时互异度指标区别于传统的平方预测误差(Square prediction error,SPE),它可以有效地对具有自相关性的残差得分进行过程状态监控.通过一个数值例子和Tennessee Eastman(TE)过程的仿真实验并与传统方法对比分析,仿真结果进一步证实了本文方法的有效性.展开更多
基金The National Natural Science Foundation of China(1127123661672021+3 种基金11501496)the Fundamental Research Fund for the Central Universities(GK201302005)the Natural Science Foundation Research of Shannxi Province(2014JM1003)the Shaanxi New-star Plan of Science and Technology(2015KJXX-21)