针对基于互质阵列波达方向(direction of arrival, DOA)估计方法对连续虚拟阵元得到的样本协方差矩阵信息利用率不高的问题,提出一种基于互质阵列的协方差矩阵重构算法。该算法利用最大连续虚拟均匀线阵协方差矩阵的每一行元素进行Toepl...针对基于互质阵列波达方向(direction of arrival, DOA)估计方法对连续虚拟阵元得到的样本协方差矩阵信息利用率不高的问题,提出一种基于互质阵列的协方差矩阵重构算法。该算法利用最大连续虚拟均匀线阵协方差矩阵的每一行元素进行Toeplitz矩阵重构,再对这些矩阵加权求和获得新的满秩协方差矩阵,提高对接收数据的利用率并消除噪声贡献对DOA估计结果的影响。理论分析和仿真结果表明,该算法能实现欠定DOA估计,在低信噪比、小快拍数、入射角度间隔小条件下有良好的角度估计精度。展开更多
为利用互质结构进行二维高精度波达方向(direction of arrival,DOA)估计,设计了双平行互质阵列,提出了构建非均匀虚拟阵列的失配处理贝叶斯学习方法,最大限度扩展了测向自由度的同时,降低了网格失配对DOA估计精度的影响。首先,对平行互...为利用互质结构进行二维高精度波达方向(direction of arrival,DOA)估计,设计了双平行互质阵列,提出了构建非均匀虚拟阵列的失配处理贝叶斯学习方法,最大限度扩展了测向自由度的同时,降低了网格失配对DOA估计精度的影响。首先,对平行互质阵列进行垂直方向扩展构建了双平行互质阵列;其次,进行了非均匀虚拟阵列扩展,利用稀疏贝叶斯学习进行稀疏重构;然后,利用到达角相邻网格的能量关系,通过泰勒展开,进行了低复杂度的失配处理;最后,提出剔除规则和选择规则,融合两个方向子阵的估计结果。理论分析和仿真实验证明了所提阵列和DOA估计方法的有效性。展开更多
展开互质阵列将两个子阵完全展开,因而可在阵元数目受限情况下获得相较于均匀阵列以及传统互质阵列更大的阵列孔径。文中基于双基地展开互质阵列多输入多输出(Multiple Input Multiple Output,MIMO)雷达阵列结构,提出了基于降维多重信...展开互质阵列将两个子阵完全展开,因而可在阵元数目受限情况下获得相较于均匀阵列以及传统互质阵列更大的阵列孔径。文中基于双基地展开互质阵列多输入多输出(Multiple Input Multiple Output,MIMO)雷达阵列结构,提出了基于降维多重信号分类(Multiple Signal Classification,MUSIC)算法的双基地展开互质阵列MIMO雷达离开角(Direction of Departure,DOD)、到达角(Direction of Arrival,DOA)联合估计算法。算法通过增加约束并构造代价函数的方式,将二维MUSIC算法中的穷尽搜索二维谱峰转化为求解带约束二次优化问题,先后得到DOA、DOD,并且DOD与DOA自动配对。降维思想的引入使得算法无需二维搜索,因而复杂度显著下降。同时,得益于展开互质阵列MIMO雷达形成的虚拟阵列与大幅扩展的阵列孔径,文中提出的算法亦获得了显著提升的分辨率、自由度以及低信噪比下更为优异的估计性能。此外,子阵数目的互质消除了阵元间距大于半波长可能导致的相位模糊问题。仿真验证了算法的有效性。展开更多
针对传统互质阵列波达方向(Direction of Arrival,DOA)估计方法的自由度低、阵列孔径小、特定方向上存在相位模糊,以及低信噪比下估计性能不佳等问题,提出了基于多重信号分类(Multiple Signal Classification,MUSIC)算法的单基地展开互...针对传统互质阵列波达方向(Direction of Arrival,DOA)估计方法的自由度低、阵列孔径小、特定方向上存在相位模糊,以及低信噪比下估计性能不佳等问题,提出了基于多重信号分类(Multiple Signal Classification,MUSIC)算法的单基地展开互质阵列多输入多输出(Multiple Input Multiple Output,MIMO)雷达DOA估计方法。该方法结合了MIMO雷达和展开互质阵列,利用展开互质阵列作为收发阵列,获得了相较于均匀线阵以及传统互质阵列更大的阵列孔径,且自由度得到提高,算法在信噪比低至-20 dB时,仍有着尖锐的谱峰。但是算法涉及对高维度矩阵的特征值分解,因此运算量极大,继而提出了基于传播算子(Propagation Method,PM)的单基地展开互质阵列MIMO雷达DOA估计方法,避免了特征值分解,运算量显著下降,且信噪比大于2 dB时性能相仿。随后,进行了无相位模糊的理论推导,提出的两种算法均严格无传统相位模糊以及新场景相位模糊问题。最后,仿真验证了算法的有效性。展开更多
传统算法通常采取舍弃互质阵列的“差联合”阵列形成离散虚拟阵元,只利用其中连续虚拟阵元进行离波方向角(direction of departure,DOD)和波达方向角(direction of arrival,DOA)联合估计,存在自由度提升受限、估计性能不佳等问题。对此...传统算法通常采取舍弃互质阵列的“差联合”阵列形成离散虚拟阵元,只利用其中连续虚拟阵元进行离波方向角(direction of departure,DOD)和波达方向角(direction of arrival,DOA)联合估计,存在自由度提升受限、估计性能不佳等问题。对此,提出基于虚拟阵元内插的互质阵列目标DOD和DOA联合估计算法。首先,将两个互质子阵以零点为中心布列,分别构成双基地多输入多输出(multiple input multiple output,MIMO)雷达的发射阵列和接收阵列,该布阵结构将传统的虚拟阵元由阵列“差联合”结构形式变成“和联合”结构形式,降低了虚拟阵列的冗余度。其次,在形成的虚拟阵元基础上,通过在虚拟阵列孔洞位置内插虚拟阵元使其连续,对于内插的虚拟阵元无实际接收信号问题,基于最小化核范数优化理论,采用协方差矩阵Toeplitz化重建的方式恢复内插虚拟阵元的等价接收信号,利于所有虚拟阵元层面的角度联合估计。最后,针对因角度配对导致的高运算量问题,结合降维多重信号分类(reduced dimension multiple signal classification,RD-MUSIC)算法使角度自动配对,从而减小算法运算复杂度。有效提高了目标分辨力和角度联合估计性能,仿真实验验证了算法的有效性。展开更多
文摘针对基于互质阵列波达方向(direction of arrival, DOA)估计方法对连续虚拟阵元得到的样本协方差矩阵信息利用率不高的问题,提出一种基于互质阵列的协方差矩阵重构算法。该算法利用最大连续虚拟均匀线阵协方差矩阵的每一行元素进行Toeplitz矩阵重构,再对这些矩阵加权求和获得新的满秩协方差矩阵,提高对接收数据的利用率并消除噪声贡献对DOA估计结果的影响。理论分析和仿真结果表明,该算法能实现欠定DOA估计,在低信噪比、小快拍数、入射角度间隔小条件下有良好的角度估计精度。
文摘为利用互质结构进行二维高精度波达方向(direction of arrival,DOA)估计,设计了双平行互质阵列,提出了构建非均匀虚拟阵列的失配处理贝叶斯学习方法,最大限度扩展了测向自由度的同时,降低了网格失配对DOA估计精度的影响。首先,对平行互质阵列进行垂直方向扩展构建了双平行互质阵列;其次,进行了非均匀虚拟阵列扩展,利用稀疏贝叶斯学习进行稀疏重构;然后,利用到达角相邻网格的能量关系,通过泰勒展开,进行了低复杂度的失配处理;最后,提出剔除规则和选择规则,融合两个方向子阵的估计结果。理论分析和仿真实验证明了所提阵列和DOA估计方法的有效性。
文摘展开互质阵列将两个子阵完全展开,因而可在阵元数目受限情况下获得相较于均匀阵列以及传统互质阵列更大的阵列孔径。文中基于双基地展开互质阵列多输入多输出(Multiple Input Multiple Output,MIMO)雷达阵列结构,提出了基于降维多重信号分类(Multiple Signal Classification,MUSIC)算法的双基地展开互质阵列MIMO雷达离开角(Direction of Departure,DOD)、到达角(Direction of Arrival,DOA)联合估计算法。算法通过增加约束并构造代价函数的方式,将二维MUSIC算法中的穷尽搜索二维谱峰转化为求解带约束二次优化问题,先后得到DOA、DOD,并且DOD与DOA自动配对。降维思想的引入使得算法无需二维搜索,因而复杂度显著下降。同时,得益于展开互质阵列MIMO雷达形成的虚拟阵列与大幅扩展的阵列孔径,文中提出的算法亦获得了显著提升的分辨率、自由度以及低信噪比下更为优异的估计性能。此外,子阵数目的互质消除了阵元间距大于半波长可能导致的相位模糊问题。仿真验证了算法的有效性。
文摘传统算法通常采取舍弃互质阵列的“差联合”阵列形成离散虚拟阵元,只利用其中连续虚拟阵元进行离波方向角(direction of departure,DOD)和波达方向角(direction of arrival,DOA)联合估计,存在自由度提升受限、估计性能不佳等问题。对此,提出基于虚拟阵元内插的互质阵列目标DOD和DOA联合估计算法。首先,将两个互质子阵以零点为中心布列,分别构成双基地多输入多输出(multiple input multiple output,MIMO)雷达的发射阵列和接收阵列,该布阵结构将传统的虚拟阵元由阵列“差联合”结构形式变成“和联合”结构形式,降低了虚拟阵列的冗余度。其次,在形成的虚拟阵元基础上,通过在虚拟阵列孔洞位置内插虚拟阵元使其连续,对于内插的虚拟阵元无实际接收信号问题,基于最小化核范数优化理论,采用协方差矩阵Toeplitz化重建的方式恢复内插虚拟阵元的等价接收信号,利于所有虚拟阵元层面的角度联合估计。最后,针对因角度配对导致的高运算量问题,结合降维多重信号分类(reduced dimension multiple signal classification,RD-MUSIC)算法使角度自动配对,从而减小算法运算复杂度。有效提高了目标分辨力和角度联合估计性能,仿真实验验证了算法的有效性。