In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction ...In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction to the double-exchange Hamiltonian, wecalculate again its ground-state phase diagram at Glling x = 0.5 by the unrestricted real-spaceHartree-Fock approximation method. We find that, as the SSH electron-phonon interaction increases,the charge order parameter decreases to zero rapidly but the CE-type antiferromagnetic order becomesmore stable. In other words, the charge order is much more fragile than the CE-type or theNeel-type antiferromagnetic orders under the electron-phonon perturbation. These results support theproposed theory in the recent publications that the charge order in these systems is induced by theantiferromagnetic correlations.展开更多
The effect of sintering temperature on the structure, magnetic transition and magnetic entropy of La0.6Ca0.4MnO3 manganite was studied. It was observed that this compound belongs to the orthorhombic structure with the...The effect of sintering temperature on the structure, magnetic transition and magnetic entropy of La0.6Ca0.4MnO3 manganite was studied. It was observed that this compound belongs to the orthorhombic structure with the Pnma space group without any impurity phase. The effect of sintering temperature on the Curie temperature(TC) was studied. The small increment in TC is found with increasing the sintering temperature. The magnetocaloric study exposes a quite large change of the magnetic entropy, which varies with sintering temperature. For an applied magnetic field of 3 T and sintering temperature of 1300 °C, the relative cooling power(RCP) is 89 J/kg. As a result, the studied compound can be considered as potential material for magnetic refrigeration near and below room temperature.展开更多
In this paper, the magnetic and transport properties in ABO3-type perovskite-like manganites as functions of the structure have been discussed from the viewpoints of A- and B-site doping, respectively. For the A-site ...In this paper, the magnetic and transport properties in ABO3-type perovskite-like manganites as functions of the structure have been discussed from the viewpoints of A- and B-site doping, respectively. For the A-site doping, two simple parameters, tolerance factor t and variance of the A-cation radius distribution s, can be used to characterize the magnetic/resistive phase diagram. For the B-site doping, the case is complicated due to the direct action to the center of double exchange. However, the dopant-size-induced local strain effect plays an important role in the physical properties besides the size mismatch between A- and B-site ions.展开更多
文摘In the present paper, we continue our investigation on the antiferromagneticorigin of the charge order observed in the halt-doped manganese. By introducing aSu-Schrieffer-Heeger (SSH) type of perturbation interaction to the double-exchange Hamiltonian, wecalculate again its ground-state phase diagram at Glling x = 0.5 by the unrestricted real-spaceHartree-Fock approximation method. We find that, as the SSH electron-phonon interaction increases,the charge order parameter decreases to zero rapidly but the CE-type antiferromagnetic order becomesmore stable. In other words, the charge order is much more fragile than the CE-type or theNeel-type antiferromagnetic orders under the electron-phonon perturbation. These results support theproposed theory in the recent publications that the charge order in these systems is induced by theantiferromagnetic correlations.
基金Project(2012-RIAIB300784) supported by Basic Science Research Program through the NRF of Korea funded by the MESTProject(2012HIB8A2026212) supported by the MEST and NRF of Korea the Human Training Project for Regional Innovation
文摘The effect of sintering temperature on the structure, magnetic transition and magnetic entropy of La0.6Ca0.4MnO3 manganite was studied. It was observed that this compound belongs to the orthorhombic structure with the Pnma space group without any impurity phase. The effect of sintering temperature on the Curie temperature(TC) was studied. The small increment in TC is found with increasing the sintering temperature. The magnetocaloric study exposes a quite large change of the magnetic entropy, which varies with sintering temperature. For an applied magnetic field of 3 T and sintering temperature of 1300 °C, the relative cooling power(RCP) is 89 J/kg. As a result, the studied compound can be considered as potential material for magnetic refrigeration near and below room temperature.
基金This work was supported by MOST of China (G19980613) NSFC (Nos. 29831010 & 20023005)+1 种基金 the Post-Doctoral Foundation of Chinathe Founder Foundation of PKU Corresponding author.
文摘In this paper, the magnetic and transport properties in ABO3-type perovskite-like manganites as functions of the structure have been discussed from the viewpoints of A- and B-site doping, respectively. For the A-site doping, two simple parameters, tolerance factor t and variance of the A-cation radius distribution s, can be used to characterize the magnetic/resistive phase diagram. For the B-site doping, the case is complicated due to the direct action to the center of double exchange. However, the dopant-size-induced local strain effect plays an important role in the physical properties besides the size mismatch between A- and B-site ions.