An inhomogeneously broadened two-mode laser system with cross-correlations between the real and imag- inary parts of quantum noise is considered. The Fokker-Planek equation of the system is derived by the phase-lockin...An inhomogeneously broadened two-mode laser system with cross-correlations between the real and imag- inary parts of quantum noise is considered. The Fokker-Planek equation of the system is derived by the phase-locking method. The steady-state probability distribution, the mean light intensity, the normalization autocorrelation function, and cross correlation function are calculated. The results indicate that: (i) The cross-correlation between the real and imaginary parts of quantum noise can cause the stationary probability distribution from one peak structure to two extrema structure when the laser system is operated above threshold; (ii) The cross-correlation between the real and imaginary parts of quantum noise enhance the light intensity fluctuation and decrease the laser output when the laser system is operated below or near threshold; (iii) The effect of the cross-correlation between the real and imaginary parts of quantum noise is very weak on the stationary properties when the laser system is operated far above threshold.展开更多
Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the...Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the intention to explain and justify this development through salient examples. The ambient noise data processing procedure can be divided into four principal phases: ① single station data preparation; ② cross- correlation and temporal stacking; ③ measurements of dispersion curves ( performed with frequency-time analysis for both group and phase speeds) ; ④ quality control, including SNR analysis and selection of the acceptable measurements. In addition, we provide a specific solution for a better use of the seismic station data to ambient noise study.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.10865006
文摘An inhomogeneously broadened two-mode laser system with cross-correlations between the real and imag- inary parts of quantum noise is considered. The Fokker-Planek equation of the system is derived by the phase-locking method. The steady-state probability distribution, the mean light intensity, the normalization autocorrelation function, and cross correlation function are calculated. The results indicate that: (i) The cross-correlation between the real and imaginary parts of quantum noise can cause the stationary probability distribution from one peak structure to two extrema structure when the laser system is operated above threshold; (ii) The cross-correlation between the real and imaginary parts of quantum noise enhance the light intensity fluctuation and decrease the laser output when the laser system is operated below or near threshold; (iii) The effect of the cross-correlation between the real and imaginary parts of quantum noise is very weak on the stationary properties when the laser system is operated far above threshold.
基金Jointly funded by the Natural Science Foundation of China(40774018)the Seismic Scientific and Technological Spark Project,China Earthquake Administration(XH13009Y)the Earthquake Research Foundation,Earthquake Administration of Anhui Province(20120702)
文摘Ambient noise tomography is a rapidly emerging field of seismological research. This paper presents the current status of ambient noise data processing and its development history over the past several years, with the intention to explain and justify this development through salient examples. The ambient noise data processing procedure can be divided into four principal phases: ① single station data preparation; ② cross- correlation and temporal stacking; ③ measurements of dispersion curves ( performed with frequency-time analysis for both group and phase speeds) ; ④ quality control, including SNR analysis and selection of the acceptable measurements. In addition, we provide a specific solution for a better use of the seismic station data to ambient noise study.