在模型比较中,有很多评价标准,如p-值等,都受制于数据的分布假定。而利用交叉验证法进行数据处理,然后比较归一化均方误差Normalized Mean Squared Error (NMSE)是目前最流行的模型评价的标准,不受任何数据分布的限制。本文详细介绍了...在模型比较中,有很多评价标准,如p-值等,都受制于数据的分布假定。而利用交叉验证法进行数据处理,然后比较归一化均方误差Normalized Mean Squared Error (NMSE)是目前最流行的模型评价的标准,不受任何数据分布的限制。本文详细介绍了交叉验证法,并给出了其具体的应用。通过对实际的问题建立了6种不同的模型,并利用10折交叉验证法对不同模型的归一化均方误差(NMSE)进行比较,选择出了最优的预测精度最高的模型。展开更多
文摘在模型比较中,有很多评价标准,如p-值等,都受制于数据的分布假定。而利用交叉验证法进行数据处理,然后比较归一化均方误差Normalized Mean Squared Error (NMSE)是目前最流行的模型评价的标准,不受任何数据分布的限制。本文详细介绍了交叉验证法,并给出了其具体的应用。通过对实际的问题建立了6种不同的模型,并利用10折交叉验证法对不同模型的归一化均方误差(NMSE)进行比较,选择出了最优的预测精度最高的模型。