为了针对性地制定后续优化措施,以降低多机场终端区内航班延误所带来的不利影响,并提高多机场系统内各机场的运营效率,进行多机场终端区航班延误的预测研究。首先,考虑多机场终端区交通态势对航班延误的影响,在对多机场终端区交通态势...为了针对性地制定后续优化措施,以降低多机场终端区内航班延误所带来的不利影响,并提高多机场系统内各机场的运营效率,进行多机场终端区航班延误的预测研究。首先,考虑多机场终端区交通态势对航班延误的影响,在对多机场终端区交通态势进行分析的基础上,建立6个描述终端区交通态势的指标。接着,构建反向传播(back propagation,BP)神经网络航班延误预测模型,将终端区交通态势指标、航班信息和天气环境数据等作为输入,航班延误时间作为输出,并利用粒子群优化算法(particle swarm optimization,PSO)优化BP神经网络进行训练。通过实例验证和分析,基于多机场终端区交通态势的航班延误预测能够有效提高预测准确率,同时,通过粒子群优化BP神经网络的预测模型预测准确率均高于一般的考虑交通态势的BP和遗传算法优化的BP神经网络模型(genetic algorithm and back propagation,GA-BP)。展开更多
随着汽车保有量的迅速增加,城市道路交通拥堵变得尤为严重,精确地检测交通态势可以帮助缓解交通问题。为此,提出一种基于车辆自组织网络(vehicular Ad hoc networks,VANETs)的交通态势检测方法——TraSDVANET(traffic situation detecti...随着汽车保有量的迅速增加,城市道路交通拥堵变得尤为严重,精确地检测交通态势可以帮助缓解交通问题。为此,提出一种基于车辆自组织网络(vehicular Ad hoc networks,VANETs)的交通态势检测方法——TraSDVANET(traffic situation detection method based on VANETs)。在该方法中,车辆自动聚簇,然后主动向簇头汇报当前自身的位置和速度信息;簇头根据收到的信息计算簇内的车辆密度和路面上的加权平均速度,之后基于模糊逻辑判断簇内的交通态势。仿真结果表明,在四种车辆场景下,TraSD-VANET检测准确程度比协作检测方法 CoTEC(cooperative traffic congestion detection)平均高16%。该方法在道路交通态势检测中有重要的应用价值。展开更多
文摘为了针对性地制定后续优化措施,以降低多机场终端区内航班延误所带来的不利影响,并提高多机场系统内各机场的运营效率,进行多机场终端区航班延误的预测研究。首先,考虑多机场终端区交通态势对航班延误的影响,在对多机场终端区交通态势进行分析的基础上,建立6个描述终端区交通态势的指标。接着,构建反向传播(back propagation,BP)神经网络航班延误预测模型,将终端区交通态势指标、航班信息和天气环境数据等作为输入,航班延误时间作为输出,并利用粒子群优化算法(particle swarm optimization,PSO)优化BP神经网络进行训练。通过实例验证和分析,基于多机场终端区交通态势的航班延误预测能够有效提高预测准确率,同时,通过粒子群优化BP神经网络的预测模型预测准确率均高于一般的考虑交通态势的BP和遗传算法优化的BP神经网络模型(genetic algorithm and back propagation,GA-BP)。
文摘随着汽车保有量的迅速增加,城市道路交通拥堵变得尤为严重,精确地检测交通态势可以帮助缓解交通问题。为此,提出一种基于车辆自组织网络(vehicular Ad hoc networks,VANETs)的交通态势检测方法——TraSDVANET(traffic situation detection method based on VANETs)。在该方法中,车辆自动聚簇,然后主动向簇头汇报当前自身的位置和速度信息;簇头根据收到的信息计算簇内的车辆密度和路面上的加权平均速度,之后基于模糊逻辑判断簇内的交通态势。仿真结果表明,在四种车辆场景下,TraSD-VANET检测准确程度比协作检测方法 CoTEC(cooperative traffic congestion detection)平均高16%。该方法在道路交通态势检测中有重要的应用价值。