Traffic matrix is an abstract representation of the traffic volume flowing between sets of source and destination pairs.It is a key input parameter of network operations management,planning,provisioning and traffic en...Traffic matrix is an abstract representation of the traffic volume flowing between sets of source and destination pairs.It is a key input parameter of network operations management,planning,provisioning and traffic engineering.Traffic matrix is also important in the context of OpenFlow-based networks.Because even good measurement systems can suffer from errors and data collection systems can fail,missing values are common.Existing matrix completion methods do not consider traffic exhibit characteristics and only provide a finite precision.To address this problem,this paper proposes a novel approach based on compressive sensing and traffic self-similarity to reconstruct the missing traffic flow data.Firstly,we analyze the realworld traffic matrix,which all exhibit lowrank structure,temporal smoothness feature and spatial self-similarity.Then,we propose Self-Similarity and Temporal Compressive Sensing(SSTCS) algorithm to reconstruct the missing traffic data.The extensive experiments with the real-world traffic matrix show that our proposed SSTCS can significantly reduce data reconstruction errors and achieve satisfactory accuracy comparing with the existing solutions.Typically SSTCS can successfully reconstruct the traffic matrix with less than 32%errors when as much as98%of the data is missing.展开更多
Recently, there have been many mo- bile value-added services in the Chinese mo- bile telecommunication market nowadays. Am- ong them, the characteristics of Multimedia Mes- saging Service (MMS) have not yet been ful...Recently, there have been many mo- bile value-added services in the Chinese mo- bile telecommunication market nowadays. Am- ong them, the characteristics of Multimedia Mes- saging Service (MMS) have not yet been fully understood. In this paper, with the help of a cloud computing platform, we investigated the flow-level charactefistcs of Chinese MMS. All of the experimental data were collected by the TMS equipment deployed in a major node in Sou- them China. The collection time spanned six mo- nths. We performed high-level analysis to show the basic distributions of MMS characteristics. Then, by analysing the detailed MMS features, we determined the distribution of personal MMS, and made a comprehensive comparison between 2G and 3G MMS. Finally, we tried to build a model on the personal MMS inter-arrival time, and we found that the Weibull distribution was optimum.展开更多
Addressing transportation planning, operation and investment challenges requires increasingly sophisticated data and information management strategies. ITS (intelligent transportation systems) and CV (connected veh...Addressing transportation planning, operation and investment challenges requires increasingly sophisticated data and information management strategies. ITS (intelligent transportation systems) and CV (connected vehicle) technologies represent a new approach to capturing and using needed transportation data in real time or near real time. In the case of Michigan, several ITS programs have been launched successfully, but independently of each other. The objective of this research is to evaluate and assess all important factors that will influence the collection, management and use of ITS data, and recommend strategies to develop integrated, dynamic and adaptive data management systems for state transportation agencies.展开更多
This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network ev...This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network evaluation theories based on road "V/C". In addition, it proposes a set of theoretical and technical methods for the real-time evaluation of traffic flows for entire road networks, and for solving key technical issues, such as real-time data collection and processing in areas with no blind zones, the spatial-temporal dynamic analysis of road network traffic, and the calibration of key performance index thresholds. It also provides new technical tools for the strategic transportation planning and real-time diagnosis of road traffic. The new tools and methodology presented in this paper are validated using a case study in Beijing.展开更多
Delay in signalized intersections may constitute a significant part of bus journey times in urban environment. Providing priority for buses at traffic signals can be an effective measure to reduce this delay. Bus prio...Delay in signalized intersections may constitute a significant part of bus journey times in urban environment. Providing priority for buses at traffic signals can be an effective measure to reduce this delay. Bus priority in Swedish urban traffic signal systems are normally coordinated with fixed time plan selection. Within this framework local traffic actuated signal timing adjustments are applied based on detector inputs aimed to reduce the number of vehicles in the dilemma zone. Active bus priority is also achieved with the aim to display green signal at the arrival of the bus to the stop line. Due to lack of knowledge of traffic performance impacts of these techniques a major research study was undertaken funded by the Swedish Road Administration. The aim was to evaluate the following control strategies using Stockholm as case study: (1) Fixed time coordination (FTC); (2) Fixed time coordination with local signal timing adjustment (FTC-LTA); (3) FTC-LTA with active bus priority (PRIBUSS); (4) Self-optimizing control (SPOT) with active bus priority. The methodologies for the study included field data collection using mobile and stationary techniques, offiine signal timing calculations with TRANSYT, microscopic simulation modeling using the HUTSIM model. The study obtained the following results: (1) Local traffic adjustment with the manual FTC reduced total delay by 1%. (2) Signal timings determined using TRANSYT reduced the average intersection delay by 9% compared to manual signal settings. (3) Local traffic adjustment reduced total delay by a further 5%. (4) Bus travel time was reduced by 11% using PRIBUSS, and 28% using SPOT. (5) Travel time for all vehicles did not increase using PRIBUSS, and was reduced by 6.5% with SPOT. Results of comparing PRIBUSS and SPOT to FTC-LTA were shown to be statistically significant.展开更多
This study explores the use of augmented reality smart glasses(ARSGs) by physicians and their adoption of these products in the Turkish medical industry.Google Glass was used as a demonstrative example for the introdu...This study explores the use of augmented reality smart glasses(ARSGs) by physicians and their adoption of these products in the Turkish medical industry.Google Glass was used as a demonstrative example for the introduction of ARSGs. We proposed an exploratory model based on the technology acceptance model by Davis. Exogenous factors in the model were defined by performing semi-structured in-depth interviews, along with the use of an expert panel in addition to the technology adoption literature. The framework was tested by means of a field study, data was collected via an Internet survey, and path analysis was used. The results indicate that there were a number of factors to be considered in order to understand ARSG adoption by physicians.Usefulness was influenced by ease of use, compatibility,ease of reminding, and speech recognition, while ease of use was affected by ease of learning, ease of medical education, external influence, and privacy. Privacy was the only negative factor that reduced the perceived ease of use,and was found to indirectly create a negative attitude.Compatibility emerged as the most significant external factor for usefulness. Developers of ARSGs should pay attention to healthcare-specific requirements for improved utilization and more extensive adoption of ARSGs in healthcare settings. In particular, they should focus on how to increase the compatibility of ARSGs. Further research needs to be conducted to explain the adoption intention of physicians.展开更多
This paper presents an important investigation into car travel time affected by mixed traffic flow near a bus stop on the basis of survival analysis theory.Travel time data associated with mixed traffic characteristic...This paper presents an important investigation into car travel time affected by mixed traffic flow near a bus stop on the basis of survival analysis theory.Travel time data associated with mixed traffic characteristics near a bus stop were collected by video cameras.A hazard-based duration model was introduced to analyze the effects of mixed traffic flow on car travel time.The results indicate that mixed traffic flow impacts car travel time significantly.And the presence of bus berthing violation would delay car travel time.The proposed model can be used to forecast temporal shifts in car travel time due to changes in mixed traffic flow.The influential factors related to mixed traffic flow should be given full consideration in the planning and designing of bus stops in developing countries.展开更多
基金This work is supported by the Prospcctive Research Project on Future Networks of Jiangsu Future Networks Innovation Institute under Grant No.BY2013095-1-05, the National Ba- sic Research Program of China (973) under Grant No. 2012CB315805 and the National Natural Science Foundation of China under Grants No. 61173167.
文摘Traffic matrix is an abstract representation of the traffic volume flowing between sets of source and destination pairs.It is a key input parameter of network operations management,planning,provisioning and traffic engineering.Traffic matrix is also important in the context of OpenFlow-based networks.Because even good measurement systems can suffer from errors and data collection systems can fail,missing values are common.Existing matrix completion methods do not consider traffic exhibit characteristics and only provide a finite precision.To address this problem,this paper proposes a novel approach based on compressive sensing and traffic self-similarity to reconstruct the missing traffic flow data.Firstly,we analyze the realworld traffic matrix,which all exhibit lowrank structure,temporal smoothness feature and spatial self-similarity.Then,we propose Self-Similarity and Temporal Compressive Sensing(SSTCS) algorithm to reconstruct the missing traffic data.The extensive experiments with the real-world traffic matrix show that our proposed SSTCS can significantly reduce data reconstruction errors and achieve satisfactory accuracy comparing with the existing solutions.Typically SSTCS can successfully reconstruct the traffic matrix with less than 32%errors when as much as98%of the data is missing.
基金supported in part by the National Science and Technology Major Project under Grant No.2012ZX03002008the National Natural Science Foundation of China under Grant No.61072061the National "111" Project of China’s Higher Education under Grant No.B08004
文摘Recently, there have been many mo- bile value-added services in the Chinese mo- bile telecommunication market nowadays. Am- ong them, the characteristics of Multimedia Mes- saging Service (MMS) have not yet been fully understood. In this paper, with the help of a cloud computing platform, we investigated the flow-level charactefistcs of Chinese MMS. All of the experimental data were collected by the TMS equipment deployed in a major node in Sou- them China. The collection time spanned six mo- nths. We performed high-level analysis to show the basic distributions of MMS characteristics. Then, by analysing the detailed MMS features, we determined the distribution of personal MMS, and made a comprehensive comparison between 2G and 3G MMS. Finally, we tried to build a model on the personal MMS inter-arrival time, and we found that the Weibull distribution was optimum.
文摘Addressing transportation planning, operation and investment challenges requires increasingly sophisticated data and information management strategies. ITS (intelligent transportation systems) and CV (connected vehicle) technologies represent a new approach to capturing and using needed transportation data in real time or near real time. In the case of Michigan, several ITS programs have been launched successfully, but independently of each other. The objective of this research is to evaluate and assess all important factors that will influence the collection, management and use of ITS data, and recommend strategies to develop integrated, dynamic and adaptive data management systems for state transportation agencies.
基金"973"National Key Basic Research & Development Program "Research of the Basic Scientific Issues in the Traffic Congestion Bottlenecks of Big Cities"( No. 2006CB705500)Beijing Science & Technology Program "Research of the New Data Collection Technologies for Transportation Management " (No.D101100049710004)Beijing Science & Technology Program "Research of the Demonstration Platform for the In-tegrated Dynamic Operation Analysis of City Road Networks"(No. D07050600440704)
文摘This paper presents an analysis of the random fluctuations, deferred conduction effect and periodicity of road traffic based on the basic features of road networks. It also discusses the limitations of road network evaluation theories based on road "V/C". In addition, it proposes a set of theoretical and technical methods for the real-time evaluation of traffic flows for entire road networks, and for solving key technical issues, such as real-time data collection and processing in areas with no blind zones, the spatial-temporal dynamic analysis of road network traffic, and the calibration of key performance index thresholds. It also provides new technical tools for the strategic transportation planning and real-time diagnosis of road traffic. The new tools and methodology presented in this paper are validated using a case study in Beijing.
文摘Delay in signalized intersections may constitute a significant part of bus journey times in urban environment. Providing priority for buses at traffic signals can be an effective measure to reduce this delay. Bus priority in Swedish urban traffic signal systems are normally coordinated with fixed time plan selection. Within this framework local traffic actuated signal timing adjustments are applied based on detector inputs aimed to reduce the number of vehicles in the dilemma zone. Active bus priority is also achieved with the aim to display green signal at the arrival of the bus to the stop line. Due to lack of knowledge of traffic performance impacts of these techniques a major research study was undertaken funded by the Swedish Road Administration. The aim was to evaluate the following control strategies using Stockholm as case study: (1) Fixed time coordination (FTC); (2) Fixed time coordination with local signal timing adjustment (FTC-LTA); (3) FTC-LTA with active bus priority (PRIBUSS); (4) Self-optimizing control (SPOT) with active bus priority. The methodologies for the study included field data collection using mobile and stationary techniques, offiine signal timing calculations with TRANSYT, microscopic simulation modeling using the HUTSIM model. The study obtained the following results: (1) Local traffic adjustment with the manual FTC reduced total delay by 1%. (2) Signal timings determined using TRANSYT reduced the average intersection delay by 9% compared to manual signal settings. (3) Local traffic adjustment reduced total delay by a further 5%. (4) Bus travel time was reduced by 11% using PRIBUSS, and 28% using SPOT. (5) Travel time for all vehicles did not increase using PRIBUSS, and was reduced by 6.5% with SPOT. Results of comparing PRIBUSS and SPOT to FTC-LTA were shown to be statistically significant.
文摘This study explores the use of augmented reality smart glasses(ARSGs) by physicians and their adoption of these products in the Turkish medical industry.Google Glass was used as a demonstrative example for the introduction of ARSGs. We proposed an exploratory model based on the technology acceptance model by Davis. Exogenous factors in the model were defined by performing semi-structured in-depth interviews, along with the use of an expert panel in addition to the technology adoption literature. The framework was tested by means of a field study, data was collected via an Internet survey, and path analysis was used. The results indicate that there were a number of factors to be considered in order to understand ARSG adoption by physicians.Usefulness was influenced by ease of use, compatibility,ease of reminding, and speech recognition, while ease of use was affected by ease of learning, ease of medical education, external influence, and privacy. Privacy was the only negative factor that reduced the perceived ease of use,and was found to indirectly create a negative attitude.Compatibility emerged as the most significant external factor for usefulness. Developers of ARSGs should pay attention to healthcare-specific requirements for improved utilization and more extensive adoption of ARSGs in healthcare settings. In particular, they should focus on how to increase the compatibility of ARSGs. Further research needs to be conducted to explain the adoption intention of physicians.
基金supported by the National Basic Research Program of China (Grant No. 2012CB725400)National Natural Science Foundation of China (Grant Nos. 70901005,71131001)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 2010000110012,20090009120015)Fundamental Research Funds for the Central Universities (Grant No. 2011JBM055)
文摘This paper presents an important investigation into car travel time affected by mixed traffic flow near a bus stop on the basis of survival analysis theory.Travel time data associated with mixed traffic characteristics near a bus stop were collected by video cameras.A hazard-based duration model was introduced to analyze the effects of mixed traffic flow on car travel time.The results indicate that mixed traffic flow impacts car travel time significantly.And the presence of bus berthing violation would delay car travel time.The proposed model can be used to forecast temporal shifts in car travel time due to changes in mixed traffic flow.The influential factors related to mixed traffic flow should be given full consideration in the planning and designing of bus stops in developing countries.