为解决角度变化下的人脸检测中存在参数量大及角度幅度变量小的问题,提出区域渐进校准网络用于任意平面角度的人脸检测,通过级联网络结构降低角度变化、提升网络运行速度。采用区域生成网络产生高质量的候选区域,构造渐进校准网络,逐步...为解决角度变化下的人脸检测中存在参数量大及角度幅度变量小的问题,提出区域渐进校准网络用于任意平面角度的人脸检测,通过级联网络结构降低角度变化、提升网络运行速度。采用区域生成网络产生高质量的候选区域,构造渐进校准网络,逐步缩小面部平面角度变化范围,同时由粗到细地对候选区域执行面部检测。其中,特征提取的中间层融合参数量较少时,更好地表示了面部特征,调整锚的设置解决小尺度面部问题。在角度增强的FDDB(face detection data set and benchmark)数据集与WIDER FACE数据集上的实验结果表明,提出的方法分别取得了89.1%与90.4%的平均召回率,准确度高于快速区域卷积神经网络(Faster RCNN),且运行速度更快。在实际项目中使用该算法,验证了该方法的有效性及可行性。展开更多
针对人脸检测中小尺度人脸和遮挡人脸的漏检问题,提出了一种基于改进YOLOv5s-face(you only look once version 5 small-face)的Face5系列人脸检测算法Face5S(face5 small)和Face5M(face5 medium)。使用马赛克(mosaic)和图像混合(mixup...针对人脸检测中小尺度人脸和遮挡人脸的漏检问题,提出了一种基于改进YOLOv5s-face(you only look once version 5 small-face)的Face5系列人脸检测算法Face5S(face5 small)和Face5M(face5 medium)。使用马赛克(mosaic)和图像混合(mixup)数据增强方法,提升算法在复杂场景下检测人脸的泛化性和稳定性;通过改进C3的网络结构和引入可变形卷积(DCNv2)降低算法的参数量,提高算法提取特征的灵活性;通过引入特征的内容感知重组上采样算子(CARAFE),提高多尺度人脸的检测性能;引入损失函数WIoUV3(wise intersection over union version 3),提升算法的小尺度人脸检测性能。实验结果表明,在WIDER FACE验证集上,相较于YOLOv5s-face算法,Face5S算法的平均mAP@0.5提升了1.03%;相较于先进的人脸检测算法ASFD-D3(automatic and scalable face detector-D3)和TinaFace,Face5M算法的平均mAP@0.5分别提升了1.07%和2.11%,提出的Face5系列算法能够有效提升算法对小尺度和部分遮挡人脸的检测性能,同时具有实时性。展开更多
针对人脸检测模型在低照度环境下出现的检测性能明显降低这一问题,提出一种基于图像增强的低照度人脸检测方法。首先,采用图像增强方法对低照度图像预处理,以增强人脸的有效特征信息;其次,在模型主干网络后引入注意力机制,以提升网络对...针对人脸检测模型在低照度环境下出现的检测性能明显降低这一问题,提出一种基于图像增强的低照度人脸检测方法。首先,采用图像增强方法对低照度图像预处理,以增强人脸的有效特征信息;其次,在模型主干网络后引入注意力机制,以提升网络对人脸区域的关注,并同时降低非均匀光照与噪声带来的负面影响;此外,引入注意力边界框损失函数WIoU(Wise Intersection over Union),以提升网络对低质量人脸的检测准确率;最后,使用更有效的特征融合模块代替模型原有结构。在低照度人脸数据集DARK FACE上的实验结果表明,所提方法的平均检测精度AP@0.5相较于原始YOLOv7模型提升了2.4个百分点,精度平均值AP@0.5:0.95提升了1.4个百分点,并且不引入额外参数与计算量。另外,在其他2个低照度人脸数据集上的结果也表明所提方法的有效性与鲁棒性,证明所提方法适用于不同场景下的低照度人脸检测。展开更多
文摘为解决角度变化下的人脸检测中存在参数量大及角度幅度变量小的问题,提出区域渐进校准网络用于任意平面角度的人脸检测,通过级联网络结构降低角度变化、提升网络运行速度。采用区域生成网络产生高质量的候选区域,构造渐进校准网络,逐步缩小面部平面角度变化范围,同时由粗到细地对候选区域执行面部检测。其中,特征提取的中间层融合参数量较少时,更好地表示了面部特征,调整锚的设置解决小尺度面部问题。在角度增强的FDDB(face detection data set and benchmark)数据集与WIDER FACE数据集上的实验结果表明,提出的方法分别取得了89.1%与90.4%的平均召回率,准确度高于快速区域卷积神经网络(Faster RCNN),且运行速度更快。在实际项目中使用该算法,验证了该方法的有效性及可行性。
文摘针对人脸检测中小尺度人脸和遮挡人脸的漏检问题,提出了一种基于改进YOLOv5s-face(you only look once version 5 small-face)的Face5系列人脸检测算法Face5S(face5 small)和Face5M(face5 medium)。使用马赛克(mosaic)和图像混合(mixup)数据增强方法,提升算法在复杂场景下检测人脸的泛化性和稳定性;通过改进C3的网络结构和引入可变形卷积(DCNv2)降低算法的参数量,提高算法提取特征的灵活性;通过引入特征的内容感知重组上采样算子(CARAFE),提高多尺度人脸的检测性能;引入损失函数WIoUV3(wise intersection over union version 3),提升算法的小尺度人脸检测性能。实验结果表明,在WIDER FACE验证集上,相较于YOLOv5s-face算法,Face5S算法的平均mAP@0.5提升了1.03%;相较于先进的人脸检测算法ASFD-D3(automatic and scalable face detector-D3)和TinaFace,Face5M算法的平均mAP@0.5分别提升了1.07%和2.11%,提出的Face5系列算法能够有效提升算法对小尺度和部分遮挡人脸的检测性能,同时具有实时性。
文摘针对人脸检测模型在低照度环境下出现的检测性能明显降低这一问题,提出一种基于图像增强的低照度人脸检测方法。首先,采用图像增强方法对低照度图像预处理,以增强人脸的有效特征信息;其次,在模型主干网络后引入注意力机制,以提升网络对人脸区域的关注,并同时降低非均匀光照与噪声带来的负面影响;此外,引入注意力边界框损失函数WIoU(Wise Intersection over Union),以提升网络对低质量人脸的检测准确率;最后,使用更有效的特征融合模块代替模型原有结构。在低照度人脸数据集DARK FACE上的实验结果表明,所提方法的平均检测精度AP@0.5相较于原始YOLOv7模型提升了2.4个百分点,精度平均值AP@0.5:0.95提升了1.4个百分点,并且不引入额外参数与计算量。另外,在其他2个低照度人脸数据集上的结果也表明所提方法的有效性与鲁棒性,证明所提方法适用于不同场景下的低照度人脸检测。