在图优化框架的基础上,设计多传感器融合方案和有效的优化方法,提出一套具有鲁棒性的定位与建图(Simultaneous Localization and Mapping,SLAM)方案,能够有效应对室内外复杂环境。进一步发展激光-视觉后端建图融合方法,构建具备全新地...在图优化框架的基础上,设计多传感器融合方案和有效的优化方法,提出一套具有鲁棒性的定位与建图(Simultaneous Localization and Mapping,SLAM)方案,能够有效应对室内外复杂环境。进一步发展激光-视觉后端建图融合方法,构建具备全新地图表达形式的点云网格化地图。同时使用低成本传感器,设计实现基于多传感器融合的高性能低成本背包扫描系统,整体完成在未知环境中的自我定位和稠密建图,且在低性能CPU设备上将长时间运动带来的每100 m的轨迹误差平均降低至厘米级。提出的基于多传感器融合方案,在精度、算力消耗上能够匹配现有主流方案,对获取各种环境条件下的系统准确定位结果和丰富的空间信息具有重要意义。展开更多
为有效解决单一传感器同时定位与地图构建(simultaneous localization and mapping, SLAM)定位精度低、障碍物识别不全问题,提出一种多传感器融合的SLAM方法。通过将RGB-D相机采集的点云进行降采样、滤波处理,极大降低算法的计算量。利...为有效解决单一传感器同时定位与地图构建(simultaneous localization and mapping, SLAM)定位精度低、障碍物识别不全问题,提出一种多传感器融合的SLAM方法。通过将RGB-D相机采集的点云进行降采样、滤波处理,极大降低算法的计算量。利用点云库对激光点云和降采样RGB-D相机点云进行融合,融合的点云利用PL-ICP完成点云配准,提高对外部环境的准确识别。利用扩展卡尔曼滤波融合IMU和轮式里程计与点云进行位姿匹配,保证定位的精度。实验结果表明,该方法可以有效提高对室内建图和导航的精度。展开更多
文摘在图优化框架的基础上,设计多传感器融合方案和有效的优化方法,提出一套具有鲁棒性的定位与建图(Simultaneous Localization and Mapping,SLAM)方案,能够有效应对室内外复杂环境。进一步发展激光-视觉后端建图融合方法,构建具备全新地图表达形式的点云网格化地图。同时使用低成本传感器,设计实现基于多传感器融合的高性能低成本背包扫描系统,整体完成在未知环境中的自我定位和稠密建图,且在低性能CPU设备上将长时间运动带来的每100 m的轨迹误差平均降低至厘米级。提出的基于多传感器融合方案,在精度、算力消耗上能够匹配现有主流方案,对获取各种环境条件下的系统准确定位结果和丰富的空间信息具有重要意义。
文摘为有效解决单一传感器同时定位与地图构建(simultaneous localization and mapping, SLAM)定位精度低、障碍物识别不全问题,提出一种多传感器融合的SLAM方法。通过将RGB-D相机采集的点云进行降采样、滤波处理,极大降低算法的计算量。利用点云库对激光点云和降采样RGB-D相机点云进行融合,融合的点云利用PL-ICP完成点云配准,提高对外部环境的准确识别。利用扩展卡尔曼滤波融合IMU和轮式里程计与点云进行位姿匹配,保证定位的精度。实验结果表明,该方法可以有效提高对室内建图和导航的精度。