A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was use...A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was used to calculate the size dissolution rate, dissolution time and mass of alumina dissolved employing commercial software and custom algorithm based on the shrinking sphere assumption. The effects of some convection and thermal condition parameters on the dissolution process were studied. The calculated results show that the decrease of alumina content or the increase of alumina diffusion coefficient is beneficial for the increase of size dissolution rate and the decrease of dissolution time of non-agglomerated particles. The increase of bath superheat or alumina preheating temperature results in the increase of size dissolution rate and the decrease of dissolution time of agglomerated particles. The calculated dissolution curve of alumina(mass fraction of alumina dissolved) for a 300 k A aluminum reduction cell is in well accordance with the experimental results. The analysis shows that the dissolution process of alumina can be divided into two distinct stages: the fast dissolution stage of non-agglomerated particles and the slow dissolution stage of agglomerated particles, with the dissolution time in the order of 10 and 100 s, respectively. The agglomerated particles were identified to be the most important factor limiting the dissolution process.展开更多
The results of a heat-conduction experiment with a central point source in a sand barrel shows that the temperature of the heat source increase much faster in sand saturated with oil and air (dry sand) than in water...The results of a heat-conduction experiment with a central point source in a sand barrel shows that the temperature of the heat source increase much faster in sand saturated with oil and air (dry sand) than in water sand. During cooling the temperature of the central heat source goes down slower in oil- or air-saturated sands than in water sands. Based on the theory of heat-conduction in porous media and the experimental results, we developed a new heat-conduction logging technique which utilizes an artificial heat source (dynamite charge or electric heater) to heat up target forma- tions in the borehole and then measure the change of temperature at a later time. Post-frac oil production is shown to be directly proportional to the size of the temperature anomaly when other reservoir parameters are fairly consistent. The method is used to evaluate potential oil production for marginal reservoirs in the FY formation in Song-Liao basin of China.展开更多
In the last several decades, circulating fluidized bed reactors have been studied in many aspects including hydrodynamics, heat and mass transfer and gas–solid two phase contacting. However, despite the abundance of ...In the last several decades, circulating fluidized bed reactors have been studied in many aspects including hydrodynamics, heat and mass transfer and gas–solid two phase contacting. However, despite the abundance of review papers on hydrodynamics, there is no summary paper on gas–solid contact efficiency to date, especially on high density circulating fluidized beds(CFBs). This paper gives an introduction to, and a review of the measurement of contact efficiency in circulating fluidized bed riser. Firstly, the popular testing method of contact efficiency including the method of heating transfer experiment and hot model reaction are discussed, then previous published papers are reviewed based on the discussed methods. Some key results of the experimental work are described and discussed. Gas–solid contact efficiency is affected by the operating conditions as well as the particle size distribution. The result of the contact efficiency shows that the CFB riser is far away from an ideal plug flow reactor due to the characteristics of hydrodynamics in the riser. Lacunae in the available literature have been delineated and recommendations have been made for further work.展开更多
We present a scheme for transferring atomic entangled states via adiabatic passage. In the scheme, we use photons to achieve efficient quantum transmission among spatially distant atoms. The probability of the success...We present a scheme for transferring atomic entangled states via adiabatic passage. In the scheme, we use photons to achieve efficient quantum transmission among spatially distant atoms. The probability of the successful transferring quantum state approaches 1. Meanwhile, the scheme is robust against the effects of atomic spontaneous emission.展开更多
Using the technique of integration within an ordered product (IWOP) of operators we construct intermediate coordinate-momentum representation, with which we build a type of operator Fredholm integration equation tha...Using the technique of integration within an ordered product (IWOP) of operators we construct intermediate coordinate-momentum representation, with which we build a type of operator Fredholm integration equation that is an operator generalization of the solution of thermo conduction equation. Then we seach for the solution of operator Fredholm integration equations, which provides us with a new approach for deriving some operator identities.展开更多
A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missi...A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missing and overflowing".A sensitive heat capacity model is introduced through which the calculation errors are analyzed.Then the equation using the self-adjusted time step is presented and solved using finite differences.Through this equation,the time needed for a space cell to reach the phase change point temperature is calculated.Using this time allows the time step to be adjusted so that errors caused by "phase change missing and overflowing" are successfully eliminated.Above all,the obvious features of this method are an accelerated rate for adjusting the time step and simplifing the computations.An actual example proves that this method can accurately calculate the temperature fields during soil freezing and thawing.It is an improvement over traditional methods and can be widely used on complicated multi-dimensional phase change problems.展开更多
In contrast to classical dimensional analysis, discriminated dimensional analysis assumes that spatial coordinates are dimensionally independent of each other and allows other types of geometrical quantity to be used ...In contrast to classical dimensional analysis, discriminated dimensional analysis assumes that spatial coordinates are dimensionally independent of each other and allows other types of geometrical quantity to be used in the dimensional basis, such as surfaces and angles. As a consequence, discriminated dimensional analysis leads to a lower number of dimensional groups, which makes the solution more precise. Besides, these discriminated groups have a clear physical meaning in terms of force and energy balances. The paper introduces this technique and provides dimensional equations for the main quantities and physical parameters of the heat transfer and fluid flow fields. Two applications are presented to demonstrate the efficiency of this method.展开更多
We propose a scheme for teleporting an unknown atomic state via adiabatic passage. Taking advantage of adiabatic passage, the atom has no probability of being excited and thus the atomic spontaneous emission is suppre...We propose a scheme for teleporting an unknown atomic state via adiabatic passage. Taking advantage of adiabatic passage, the atom has no probability of being excited and thus the atomic spontaneous emission is suppressed. We also show that the fidelity can reach 1 under certain condition.展开更多
In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regr...In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regression method was proposed to establish the thermal error model. Furthermore, two compensation methods were implemented based on the SIEMENS 840D system by using the feed shaft of z direction and telescopic spindle respectively. Experimental results showed that the thermal error could be reduced by 73.79% when using the second compensation method, and the thermal error could be eliminated by using the two compensation methods effectively.展开更多
This paper focuses on the heat transfer performance of semi-open heat pipe which is a new type of heat pipe. After analyzing its condensation heat transfer mechanisms theoretically, several semi-open heat pipes in dif...This paper focuses on the heat transfer performance of semi-open heat pipe which is a new type of heat pipe. After analyzing its condensation heat transfer mechanisms theoretically, several semi-open heat pipes in different length ratios and upper hole diameters are studied experimentally and compared with the same dimensions closed heat pipes. Experimental results show that the heat transfer performance of semi-open heat pipe becomes better by increasing heat transfer rate. At the first transitional point, the heat transfer performance of semi-open heat pipe approaches the level of the closed heat pipe. It is suitable to choose upper small hole about 1 mm in diameter and length ratio larger than 0.6 for the semi-open heat pipe.展开更多
Flow and concentration fields of liquid phase in a gas-liquid contacting system are simulated to showthe Rayleigh convection by utilizing the finite-element method. The Schlieren images in CO2-ethanol system provided ...Flow and concentration fields of liquid phase in a gas-liquid contacting system are simulated to showthe Rayleigh convection by utilizing the finite-element method. The Schlieren images in CO2-ethanol system provided direct visual verification of the present simulation, and the simulated results were well consistent with theexperimental observation. The influence of the Rayleigh convection on mass transfer is analyzed qualitatively andquantitatively based on the simulated and the experimental results.展开更多
基金Project(2010AA065201)supported by the High-tech Research and Development Program of ChinaProject(2013zzts038)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(ZB2011CBBCe1)supported by the Major Program for Aluminum Corporation of China Limited
文摘A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was used to calculate the size dissolution rate, dissolution time and mass of alumina dissolved employing commercial software and custom algorithm based on the shrinking sphere assumption. The effects of some convection and thermal condition parameters on the dissolution process were studied. The calculated results show that the decrease of alumina content or the increase of alumina diffusion coefficient is beneficial for the increase of size dissolution rate and the decrease of dissolution time of non-agglomerated particles. The increase of bath superheat or alumina preheating temperature results in the increase of size dissolution rate and the decrease of dissolution time of agglomerated particles. The calculated dissolution curve of alumina(mass fraction of alumina dissolved) for a 300 k A aluminum reduction cell is in well accordance with the experimental results. The analysis shows that the dissolution process of alumina can be divided into two distinct stages: the fast dissolution stage of non-agglomerated particles and the slow dissolution stage of agglomerated particles, with the dissolution time in the order of 10 and 100 s, respectively. The agglomerated particles were identified to be the most important factor limiting the dissolution process.
文摘The results of a heat-conduction experiment with a central point source in a sand barrel shows that the temperature of the heat source increase much faster in sand saturated with oil and air (dry sand) than in water sand. During cooling the temperature of the central heat source goes down slower in oil- or air-saturated sands than in water sands. Based on the theory of heat-conduction in porous media and the experimental results, we developed a new heat-conduction logging technique which utilizes an artificial heat source (dynamite charge or electric heater) to heat up target forma- tions in the borehole and then measure the change of temperature at a later time. Post-frac oil production is shown to be directly proportional to the size of the temperature anomaly when other reservoir parameters are fairly consistent. The method is used to evaluate potential oil production for marginal reservoirs in the FY formation in Song-Liao basin of China.
基金Supported by the Scientific Research Funds from China University of Petroleum(Beijing)(No.2462014YJRC018)partially supported by the National Natural Science Foundation of China(No.21506253 and No.91534204)
文摘In the last several decades, circulating fluidized bed reactors have been studied in many aspects including hydrodynamics, heat and mass transfer and gas–solid two phase contacting. However, despite the abundance of review papers on hydrodynamics, there is no summary paper on gas–solid contact efficiency to date, especially on high density circulating fluidized beds(CFBs). This paper gives an introduction to, and a review of the measurement of contact efficiency in circulating fluidized bed riser. Firstly, the popular testing method of contact efficiency including the method of heating transfer experiment and hot model reaction are discussed, then previous published papers are reviewed based on the discussed methods. Some key results of the experimental work are described and discussed. Gas–solid contact efficiency is affected by the operating conditions as well as the particle size distribution. The result of the contact efficiency shows that the CFB riser is far away from an ideal plug flow reactor due to the characteristics of hydrodynamics in the riser. Lacunae in the available literature have been delineated and recommendations have been made for further work.
基金The project supported by National Natural Science Foundation of China under Grant No. 10574022 and the Natural Science Foundaation of Fujian Province under Grant No. Z0512006
文摘We present a scheme for transferring atomic entangled states via adiabatic passage. In the scheme, we use photons to achieve efficient quantum transmission among spatially distant atoms. The probability of the successful transferring quantum state approaches 1. Meanwhile, the scheme is robust against the effects of atomic spontaneous emission.
基金The project supported by the President Foundation of the Chinese Academy of Sciences
文摘Using the technique of integration within an ordered product (IWOP) of operators we construct intermediate coordinate-momentum representation, with which we build a type of operator Fredholm integration equation that is an operator generalization of the solution of thermo conduction equation. Then we seach for the solution of operator Fredholm integration equations, which provides us with a new approach for deriving some operator identities.
基金Project 2006G1662-00 supported by the Key Science and Technology Project of Heilongjiang Province
文摘A new variable time step method,which is called the backwards calculating time step method,is presented in this paper.It allows numerical simulation of soil freezing and thawing while avoiding "phase change missing and overflowing".A sensitive heat capacity model is introduced through which the calculation errors are analyzed.Then the equation using the self-adjusted time step is presented and solved using finite differences.Through this equation,the time needed for a space cell to reach the phase change point temperature is calculated.Using this time allows the time step to be adjusted so that errors caused by "phase change missing and overflowing" are successfully eliminated.Above all,the obvious features of this method are an accelerated rate for adjusting the time step and simplifing the computations.An actual example proves that this method can accurately calculate the temperature fields during soil freezing and thawing.It is an improvement over traditional methods and can be widely used on complicated multi-dimensional phase change problems.
文摘In contrast to classical dimensional analysis, discriminated dimensional analysis assumes that spatial coordinates are dimensionally independent of each other and allows other types of geometrical quantity to be used in the dimensional basis, such as surfaces and angles. As a consequence, discriminated dimensional analysis leads to a lower number of dimensional groups, which makes the solution more precise. Besides, these discriminated groups have a clear physical meaning in terms of force and energy balances. The paper introduces this technique and provides dimensional equations for the main quantities and physical parameters of the heat transfer and fluid flow fields. Two applications are presented to demonstrate the efficiency of this method.
文摘We propose a scheme for teleporting an unknown atomic state via adiabatic passage. Taking advantage of adiabatic passage, the atom has no probability of being excited and thus the atomic spontaneous emission is suppressed. We also show that the fidelity can reach 1 under certain condition.
文摘In this paper, eddy current sensors and thermocouple sensors were employed to measure the thermal field and thermal deformation of a spindle of a telescopic CNC boring-milling machine tool, respectively. A linear regression method was proposed to establish the thermal error model. Furthermore, two compensation methods were implemented based on the SIEMENS 840D system by using the feed shaft of z direction and telescopic spindle respectively. Experimental results showed that the thermal error could be reduced by 73.79% when using the second compensation method, and the thermal error could be eliminated by using the two compensation methods effectively.
文摘This paper focuses on the heat transfer performance of semi-open heat pipe which is a new type of heat pipe. After analyzing its condensation heat transfer mechanisms theoretically, several semi-open heat pipes in different length ratios and upper hole diameters are studied experimentally and compared with the same dimensions closed heat pipes. Experimental results show that the heat transfer performance of semi-open heat pipe becomes better by increasing heat transfer rate. At the first transitional point, the heat transfer performance of semi-open heat pipe approaches the level of the closed heat pipe. It is suitable to choose upper small hole about 1 mm in diameter and length ratio larger than 0.6 for the semi-open heat pipe.
基金Supported by the National Natural Science Foundation of China (No. 20076032).
文摘Flow and concentration fields of liquid phase in a gas-liquid contacting system are simulated to showthe Rayleigh convection by utilizing the finite-element method. The Schlieren images in CO2-ethanol system provided direct visual verification of the present simulation, and the simulated results were well consistent with theexperimental observation. The influence of the Rayleigh convection on mass transfer is analyzed qualitatively andquantitatively based on the simulated and the experimental results.