自动落布车位姿估计的准确性是影响其在纺织车间内同时定位与地图构建(simultaneous localization and mapping,SLAM)的关键因素。在进行自动落布车位姿估计时,遇到观测噪声异常变化或噪声协方差与算法不匹配等情况时,无迹卡尔曼滤波(un...自动落布车位姿估计的准确性是影响其在纺织车间内同时定位与地图构建(simultaneous localization and mapping,SLAM)的关键因素。在进行自动落布车位姿估计时,遇到观测噪声异常变化或噪声协方差与算法不匹配等情况时,无迹卡尔曼滤波(unscented Kalman filter,UKF)难以准确估计小车的位置和姿态。针对此问题,将误差序列协方差估计与遗忘因子同时引入UKF进行改进,提出了一种改进的自适应UKF自动落布车位姿估计算法。通过误差序列协方差估计对观测噪声协方差矩阵R进行调整,引入遗忘因子对R进行自适应更新,进而得到自动落布车位姿的最优估计。实验结果表明,在高斯噪声环境下,改进的UKF算法比其他算法具有更好的鲁棒性和估计精度。改进后的UKF位姿估计算法代入Cartographer算法后建图误差值减小,表明此算法能够在室内复杂环境下达到更加精确的位姿估计。展开更多
基于点云的空间非合作目标位姿估计,常受到噪声影响.提出截断最小二乘估计与半定松弛(truncated least squares estimation and semidefinite relaxation,TEASER)与迭代最近点(iterative closest point,ICP)的结合算法,提升空间非合作...基于点云的空间非合作目标位姿估计,常受到噪声影响.提出截断最小二乘估计与半定松弛(truncated least squares estimation and semidefinite relaxation,TEASER)与迭代最近点(iterative closest point,ICP)的结合算法,提升空间非合作目标位姿估计精度与鲁棒性.该方法包括粗配准与精配准两个环节:在粗配准环节中,基于局部点云与模型点云的方向直方图特征(signature of histogram of orientation,SHOT)确定匹配对,利用TEASER算法求解初始位姿;在精配准环节中,可结合ICP算法优化位姿估计结果.北斗卫星仿真实验表明:在连续帧位姿估计中,噪声标准差为3倍点云分辨率时,基于TEASER的周期关键帧配准方法的平移误差小于3.33 cm,旋转误差小于2.18°;与传统ICP方法相比,平均平移误差与平均旋转误差均有所降低.这表明所提出的空间非合作目标位姿估计方法具有良好的精度和鲁棒性.展开更多
为解决在训练物体六自由度位姿估计神经网络时,人工标注真实场景数据集困难的问题,提出一种自动生成大量单目六自由度位姿估计数据集的方法,可提高数据集标注效率和精度。考虑采集图象环境的光照、物体遮挡等条件,以单目RGB相机、物体...为解决在训练物体六自由度位姿估计神经网络时,人工标注真实场景数据集困难的问题,提出一种自动生成大量单目六自由度位姿估计数据集的方法,可提高数据集标注效率和精度。考虑采集图象环境的光照、物体遮挡等条件,以单目RGB相机、物体三维模型作为输入,在运动恢复结构(structure form motion,SfM)算法框架中添加尺度先验信息约束,实现在真实场景快速生成大量用于六自由度位姿估计训练的数据集。以生活用品为例,分别制作无遮挡、有遮挡数据集,与现有六自由度位姿估计数据集作对比,使用神经网络算法验证根据该方法制作出数据集的可行性与有效性。展开更多
为提高ORB-SLAM2 (oriented fast and rotated brief, and simultaneous localization and mapping)系统的位姿估计精度并解决仅能生成稀疏地图的问题,提出了融合迭代最近点拟合(iterative closest point, ICP)算法与曼哈顿世界假说的...为提高ORB-SLAM2 (oriented fast and rotated brief, and simultaneous localization and mapping)系统的位姿估计精度并解决仅能生成稀疏地图的问题,提出了融合迭代最近点拟合(iterative closest point, ICP)算法与曼哈顿世界假说的位姿估计策略并在系统中加入稠密建图线程。首先通过ORB(oriented fast and rotated brief)特征点法、最小显著性差异(least-significant difference, LSD)算法和聚集层次聚类(agglomerative hierarchical clustering, AHC)方法提取点、线、面特征,其中点、线特征与上一帧匹配,面特征在全局地图匹配。然后采用基于surfel的稠密建图策略将图像划分为非平面与平面区域,非平面采用ICP算法计算位姿,平面则通过面与面的正交关系确定曼哈顿世界从而使用不同估计策略,其中曼哈顿世界场景通过位姿解耦实现基于曼哈顿帧观测的无漂移旋转估计,而该场景的平移以及非曼哈顿世界场景的位姿采用追踪的点、线、面特征进行估计和优化;最后根据关键帧和相应位姿实现稠密建图。采用慕尼黑工业大学(technische universit?t münchen, TUM)数据集验证所提建图方法,经过与ORB-SLAM2算法比较,均方根误差平均减少0.24 cm,平均定位精度提高7.17%,验证了所提方法进行稠密建图的可行性和有效性。展开更多
文摘针对单帧RGB-D图像进行物体六自由度位姿估计时,在物体遮挡、光线情况不良、低纹理情况下性能不佳的问题,本文设计了一种基于多网络特征融合(颜色特征提取网络和点云特征提取网络)的深度学习网络.首先,使用颜色特征提取网络提取RGB图像中的纹理特征,使用点云特征提取网络计算深度图中的点云特征,进行几何特征与纹理特征计算后,回归计算点云的关键点投票及实例语义信息.然后,通过投票聚类方式计算每个实例的所属类别和关键点位置.将RGB-D图像中的颜色信息与几何信息分别计算,由于后续操作需要充分考虑像素及点云的局部信息与全局信息,分别使用改进后的残差神经网络和RIPoint(residuals inverted point)网络提取数据特征.采用神经网络中的特征融合方法将颜色信息与几何信息充分提取,为后续模块提供更有效的点云特征.使用深度霍夫投票算法与均值偏移聚类算法计算实例的三维关键点坐标.最后,利用最小二乘拟合方法计算预测三维关键点的物体位姿参数.在LineMOD数据集和YCB-Video数据集上进行测试,实验结果表明:与六自由度物体位姿估计方法相比,本文模型预测的物体位姿准确率高于其他方法,平均准确率分别达到99.5%和96.9%.网络同时基本满足实时性要求,完成一帧RGB-D图像的多实例物体位姿估计时间需0.06 s.
文摘基于点云的空间非合作目标位姿估计,常受到噪声影响.提出截断最小二乘估计与半定松弛(truncated least squares estimation and semidefinite relaxation,TEASER)与迭代最近点(iterative closest point,ICP)的结合算法,提升空间非合作目标位姿估计精度与鲁棒性.该方法包括粗配准与精配准两个环节:在粗配准环节中,基于局部点云与模型点云的方向直方图特征(signature of histogram of orientation,SHOT)确定匹配对,利用TEASER算法求解初始位姿;在精配准环节中,可结合ICP算法优化位姿估计结果.北斗卫星仿真实验表明:在连续帧位姿估计中,噪声标准差为3倍点云分辨率时,基于TEASER的周期关键帧配准方法的平移误差小于3.33 cm,旋转误差小于2.18°;与传统ICP方法相比,平均平移误差与平均旋转误差均有所降低.这表明所提出的空间非合作目标位姿估计方法具有良好的精度和鲁棒性.
文摘为解决在训练物体六自由度位姿估计神经网络时,人工标注真实场景数据集困难的问题,提出一种自动生成大量单目六自由度位姿估计数据集的方法,可提高数据集标注效率和精度。考虑采集图象环境的光照、物体遮挡等条件,以单目RGB相机、物体三维模型作为输入,在运动恢复结构(structure form motion,SfM)算法框架中添加尺度先验信息约束,实现在真实场景快速生成大量用于六自由度位姿估计训练的数据集。以生活用品为例,分别制作无遮挡、有遮挡数据集,与现有六自由度位姿估计数据集作对比,使用神经网络算法验证根据该方法制作出数据集的可行性与有效性。
文摘为提高ORB-SLAM2 (oriented fast and rotated brief, and simultaneous localization and mapping)系统的位姿估计精度并解决仅能生成稀疏地图的问题,提出了融合迭代最近点拟合(iterative closest point, ICP)算法与曼哈顿世界假说的位姿估计策略并在系统中加入稠密建图线程。首先通过ORB(oriented fast and rotated brief)特征点法、最小显著性差异(least-significant difference, LSD)算法和聚集层次聚类(agglomerative hierarchical clustering, AHC)方法提取点、线、面特征,其中点、线特征与上一帧匹配,面特征在全局地图匹配。然后采用基于surfel的稠密建图策略将图像划分为非平面与平面区域,非平面采用ICP算法计算位姿,平面则通过面与面的正交关系确定曼哈顿世界从而使用不同估计策略,其中曼哈顿世界场景通过位姿解耦实现基于曼哈顿帧观测的无漂移旋转估计,而该场景的平移以及非曼哈顿世界场景的位姿采用追踪的点、线、面特征进行估计和优化;最后根据关键帧和相应位姿实现稠密建图。采用慕尼黑工业大学(technische universit?t münchen, TUM)数据集验证所提建图方法,经过与ORB-SLAM2算法比较,均方根误差平均减少0.24 cm,平均定位精度提高7.17%,验证了所提方法进行稠密建图的可行性和有效性。