【目的】森林火灾识别是避免森林火灾大面积蔓延的一项重要研究。随着深度学习的快速发展,基于卷积神经网络的模型因其在图像识别领域的优异表现,被广泛应用到森林火灾识别任务当中。然而,基于卷积神经网络的方法通常在标签数据不充分时...【目的】森林火灾识别是避免森林火灾大面积蔓延的一项重要研究。随着深度学习的快速发展,基于卷积神经网络的模型因其在图像识别领域的优异表现,被广泛应用到森林火灾识别任务当中。然而,基于卷积神经网络的方法通常在标签数据不充分时,难以取得令人满意的森林火灾识别结果。【方法】本研究提出了一种基于视觉变换网络的自监督森林火灾识别模型(Self supervised forest fire identification model based on visual transformation network),来提高模型在标签稀缺情况下的森林火灾识别精度。具体来说,该模型采用视觉变换网络作为主干网络,通过视觉变换网络中的多头自注意力机制来捕获森林火灾图像的全局信息特征。并且引入自监督学习中的图像重建任务来辅助模型训练,从而减少模型对标签数据的依赖。模型通过对掩盖图像的特征恢复和重建学习相关语义信息。同时,本研究还提出了一种基于傅里叶低频混合变换的数据增强方法来提高模型的泛化性和鲁棒性。【结果】通过开展详细的试验来验证模型的有效性,结果表明,与其他常见的网络模型相比,FFDM模型在森林火灾识别任务中取得了最佳的识别效果,其识别准确率为89.51%,比VGG16网络高13.7%,比ResNet50网络高8.2%,比InceptionV3网络高7.2%。【结论】通过自监督学习辅助模型训练的方法,FFDM模型即使在标签稀缺下依然可以取得不错的森林火灾识别效果。展开更多
A selective subband enhancement method based on biorthogonal wavelet base is proposed. This novel image enhancement method is just for those images in which the energy of target information area is relatively lower. I...A selective subband enhancement method based on biorthogonal wavelet base is proposed. This novel image enhancement method is just for those images in which the energy of target information area is relatively lower. It includes two parts: one is enhancing the low frequency subband by wavelet decomposition and the other is building a new criterion based on entropy window to image evaluation. Experimental results show that this new scheme may result in a perfect image processing.展开更多
文摘【目的】森林火灾识别是避免森林火灾大面积蔓延的一项重要研究。随着深度学习的快速发展,基于卷积神经网络的模型因其在图像识别领域的优异表现,被广泛应用到森林火灾识别任务当中。然而,基于卷积神经网络的方法通常在标签数据不充分时,难以取得令人满意的森林火灾识别结果。【方法】本研究提出了一种基于视觉变换网络的自监督森林火灾识别模型(Self supervised forest fire identification model based on visual transformation network),来提高模型在标签稀缺情况下的森林火灾识别精度。具体来说,该模型采用视觉变换网络作为主干网络,通过视觉变换网络中的多头自注意力机制来捕获森林火灾图像的全局信息特征。并且引入自监督学习中的图像重建任务来辅助模型训练,从而减少模型对标签数据的依赖。模型通过对掩盖图像的特征恢复和重建学习相关语义信息。同时,本研究还提出了一种基于傅里叶低频混合变换的数据增强方法来提高模型的泛化性和鲁棒性。【结果】通过开展详细的试验来验证模型的有效性,结果表明,与其他常见的网络模型相比,FFDM模型在森林火灾识别任务中取得了最佳的识别效果,其识别准确率为89.51%,比VGG16网络高13.7%,比ResNet50网络高8.2%,比InceptionV3网络高7.2%。【结论】通过自监督学习辅助模型训练的方法,FFDM模型即使在标签稀缺下依然可以取得不错的森林火灾识别效果。
基金Project (2003AA1Z2610) supported by National High Technology Research and Development Programof China
文摘A selective subband enhancement method based on biorthogonal wavelet base is proposed. This novel image enhancement method is just for those images in which the energy of target information area is relatively lower. It includes two parts: one is enhancing the low frequency subband by wavelet decomposition and the other is building a new criterion based on entropy window to image evaluation. Experimental results show that this new scheme may result in a perfect image processing.