电子商务的蓬勃发展使得电商平台成为人们日常购物的重要渠道,而客户评价作为电商平台的核心功能之一,对用户购买决策的影响日益显著。然而,虚假评价、恶意评价、评价内容质量低等问题也日益突出,严重影响了用户对平台的信任度,进而影...电子商务的蓬勃发展使得电商平台成为人们日常购物的重要渠道,而客户评价作为电商平台的核心功能之一,对用户购买决策的影响日益显著。然而,虚假评价、恶意评价、评价内容质量低等问题也日益突出,严重影响了用户对平台的信任度,进而影响平台的口碑和用户黏性。本文将从电商平台客户评价管理的现状出发,深入分析当前客户评价体系存在的问题,探讨其对用户信任度的影响机制,并提出一系列提升用户信任度的策略,包括完善评价机制、优化评价展示方式、强化商家服务管理、加强平台监管等。通过案例分析,本文将展示国内外知名电商平台在客户评价管理方面的成功经验和不足之处,为电商平台提供参考,帮助其构建更加完善的客户评价体系,提升用户信任度,促进平台健康可持续发展,并展望未来电商平台客户评价管理的发展方向。The rapid development of e-commerce has made online shopping platforms an essential channel for daily purchases. Among the core functionalities of these platforms, customer reviews play a significant role in influencing purchasing decisions. However, issues such as fake reviews, malicious reviews, and low-quality content have increasingly emerged, seriously affecting users’ trust in the platform and consequently impacting its reputation and user retention. This paper starts by examining the current state of customer review management on e-commerce platforms, analyzing the existing problems within the review system, and exploring the mechanisms through which these issues affect user trust. It proposes a series of strategies to enhance user trust, including improving the review mechanism, optimizing the presentation of reviews, strengthening merchant service management, and enhancing platform regulation. Through case studies, this paper will highlight both the successful experiences and shortcomings of well-known domestic and international e-commerce platforms in managing customer reviews. The aim is to provide reference for e-commerce platforms to build a more robust customer review system, increase user trust, promote healthy and sustainable development, and anticipate future directions in customer review management for e-commerce platforms.展开更多
针对无线传感器网络中节点的安全性及覆盖问题,提出基于节点信任度的三维覆盖算法(three dimensional coverage algorithm based on node trust,NTA3D)。该算法依据虚拟力、网格划分及节点信任度的思想,引入吸引源联合信任度。将待监测...针对无线传感器网络中节点的安全性及覆盖问题,提出基于节点信任度的三维覆盖算法(three dimensional coverage algorithm based on node trust,NTA3D)。该算法依据虚拟力、网格划分及节点信任度的思想,引入吸引源联合信任度。将待监测区域划分成网格,并在每个网格中心部署吸引源。吸引源可以根据网格中的活跃节点计算该网格的联合信任度,并根据联合信任度调度节点,调度结束后工作节点根据其所受合力的大小和方向重新部署。通过实验仿真,证明了该算法能够在保证安全性的前提下有效地提高覆盖率,降低网络能耗。展开更多
文摘电子商务的蓬勃发展使得电商平台成为人们日常购物的重要渠道,而客户评价作为电商平台的核心功能之一,对用户购买决策的影响日益显著。然而,虚假评价、恶意评价、评价内容质量低等问题也日益突出,严重影响了用户对平台的信任度,进而影响平台的口碑和用户黏性。本文将从电商平台客户评价管理的现状出发,深入分析当前客户评价体系存在的问题,探讨其对用户信任度的影响机制,并提出一系列提升用户信任度的策略,包括完善评价机制、优化评价展示方式、强化商家服务管理、加强平台监管等。通过案例分析,本文将展示国内外知名电商平台在客户评价管理方面的成功经验和不足之处,为电商平台提供参考,帮助其构建更加完善的客户评价体系,提升用户信任度,促进平台健康可持续发展,并展望未来电商平台客户评价管理的发展方向。The rapid development of e-commerce has made online shopping platforms an essential channel for daily purchases. Among the core functionalities of these platforms, customer reviews play a significant role in influencing purchasing decisions. However, issues such as fake reviews, malicious reviews, and low-quality content have increasingly emerged, seriously affecting users’ trust in the platform and consequently impacting its reputation and user retention. This paper starts by examining the current state of customer review management on e-commerce platforms, analyzing the existing problems within the review system, and exploring the mechanisms through which these issues affect user trust. It proposes a series of strategies to enhance user trust, including improving the review mechanism, optimizing the presentation of reviews, strengthening merchant service management, and enhancing platform regulation. Through case studies, this paper will highlight both the successful experiences and shortcomings of well-known domestic and international e-commerce platforms in managing customer reviews. The aim is to provide reference for e-commerce platforms to build a more robust customer review system, increase user trust, promote healthy and sustainable development, and anticipate future directions in customer review management for e-commerce platforms.
文摘针对无线传感器网络中节点的安全性及覆盖问题,提出基于节点信任度的三维覆盖算法(three dimensional coverage algorithm based on node trust,NTA3D)。该算法依据虚拟力、网格划分及节点信任度的思想,引入吸引源联合信任度。将待监测区域划分成网格,并在每个网格中心部署吸引源。吸引源可以根据网格中的活跃节点计算该网格的联合信任度,并根据联合信任度调度节点,调度结束后工作节点根据其所受合力的大小和方向重新部署。通过实验仿真,证明了该算法能够在保证安全性的前提下有效地提高覆盖率,降低网络能耗。