Backward doubly stochastic differential equations driven by Brownian motions and Poisson process (BDSDEP) with non-Lipschitz coefficients on random time interval are studied. The probabilistic interpretation for the...Backward doubly stochastic differential equations driven by Brownian motions and Poisson process (BDSDEP) with non-Lipschitz coefficients on random time interval are studied. The probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs) is treated with BDSDEP. Under non-Lipschitz conditions, the existence and uniqueness results for measurable solutions to BDSDEP are established via the smoothing technique. Then, the continuous depen- dence for solutions to BDSDEP is derived. Finally, the probabilistic interpretation for the solutions to a class of quasilinear SPDIEs is given.展开更多
This paper studies a class of forward-backward stochastic differential equations (FBSDE)in a general Markovian framework.The forward SDE represents a large class of strong Markov semimartingales,and the backward gener...This paper studies a class of forward-backward stochastic differential equations (FBSDE)in a general Markovian framework.The forward SDE represents a large class of strong Markov semimartingales,and the backward generator requires only mild regularity assumptions.The authors showthat the Four Step Scheme introduced by Ma,et al.(1994) is still effective in this case.Namely,the authors show that the adapted solution of the FBSDE exists and is unique over any prescribedtime duration;and the backward components can be determined explicitly by the forward componentvia the classical solution to a system of parabolic integro-partial differential equations.An importantconsequence the authors would like to draw from this fact is that,contrary to the general belief,in aMarkovian set-up the martingale representation theorem is no longer the reason for the well-posednessof the FBSDE,but rather a consequence of the existence of the solution of the decoupling integralpartialdifferential equation.Finally,the authors briefly discuss the possibility of reducing the regularityrequirements of the coefficients by using a scheme proposed by F.Delarue (2002) to the current case.展开更多
We introduce a new type of path-dependent quasi-linear parabolic PDEs in which the continuous paths on an interval [0, t] become the basic variables in the place of classical variables (t, x) ∈[0, T]× R^d. Thi...We introduce a new type of path-dependent quasi-linear parabolic PDEs in which the continuous paths on an interval [0, t] become the basic variables in the place of classical variables (t, x) ∈[0, T]× R^d. This new type of PDEs are formulated through a classical BSDE in which the terminal values and the generators are allowed to be general function of Brownian motion paths. In this way, we establish the nonlinear Feynman- Kac formula for a general non-Markoviau BSDE. Some main properties of solutions of this new PDEs are also obtained.展开更多
基金Supported by the Academic Discipline Program,211 Project for Shanghai University of Finance and Economics(the 3rd phase)the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of China (708040)
基金supported by the National Natural Science Foundation of China (Nos. 10771122,11071145)the Shandong Provincial Natural Science Foundation of China (No. Y2006A08)+2 种基金the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No. 10921101)the National Basic Research Program of China (the 973 Program) (No. 2007CB814900)the Independent Innovation Foundation of Shandong University (No. 2010JQ010)
文摘Backward doubly stochastic differential equations driven by Brownian motions and Poisson process (BDSDEP) with non-Lipschitz coefficients on random time interval are studied. The probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs) is treated with BDSDEP. Under non-Lipschitz conditions, the existence and uniqueness results for measurable solutions to BDSDEP are established via the smoothing technique. Then, the continuous depen- dence for solutions to BDSDEP is derived. Finally, the probabilistic interpretation for the solutions to a class of quasilinear SPDIEs is given.
基金supported by the National Science Foundation under Grant Nos. #DMS 0505472, 0806017,and#DMS 0604309
文摘This paper studies a class of forward-backward stochastic differential equations (FBSDE)in a general Markovian framework.The forward SDE represents a large class of strong Markov semimartingales,and the backward generator requires only mild regularity assumptions.The authors showthat the Four Step Scheme introduced by Ma,et al.(1994) is still effective in this case.Namely,the authors show that the adapted solution of the FBSDE exists and is unique over any prescribedtime duration;and the backward components can be determined explicitly by the forward componentvia the classical solution to a system of parabolic integro-partial differential equations.An importantconsequence the authors would like to draw from this fact is that,contrary to the general belief,in aMarkovian set-up the martingale representation theorem is no longer the reason for the well-posednessof the FBSDE,but rather a consequence of the existence of the solution of the decoupling integralpartialdifferential equation.Finally,the authors briefly discuss the possibility of reducing the regularityrequirements of the coefficients by using a scheme proposed by F.Delarue (2002) to the current case.
基金supported by National Natural Science Foundation of China(Grant No.10921101)the Programme of Introducing Talents of Discipline to Universities of China(Grant No.B12023)the Fundamental Research Funds of Shandong University
文摘We introduce a new type of path-dependent quasi-linear parabolic PDEs in which the continuous paths on an interval [0, t] become the basic variables in the place of classical variables (t, x) ∈[0, T]× R^d. This new type of PDEs are formulated through a classical BSDE in which the terminal values and the generators are allowed to be general function of Brownian motion paths. In this way, we establish the nonlinear Feynman- Kac formula for a general non-Markoviau BSDE. Some main properties of solutions of this new PDEs are also obtained.