Employing photothermal conversion to improve the photocatalytic activity of g-C3N4 is rarely reported previously. Herein, different ratios of g-C3N4/Bi2S3 heterojunction materials are synthesized by a facile ultrasoni...Employing photothermal conversion to improve the photocatalytic activity of g-C3N4 is rarely reported previously. Herein, different ratios of g-C3N4/Bi2S3 heterojunction materials are synthesized by a facile ultrasonic method. Advanced characterizations such as X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy are employed to analyze the morphology and structure of the prepared materials. Compared with sole counterparts, the heterojunction materials CN-Bi S-2 exhibit significantly enhanced photocatalytic performance, which is 2.05-fold as g-C3N4 and 4.42-fold as Bi2S3. A possible degradation pathway of methylene blue(MB) was proposed. Based on the photoproduced high-energy electrons and photothermal effect of Bi2S3, the transfer and separation of electron-hole pairs are greatly enhanced and more active species are produced. In addition, the relatively high utilization efficiency of solar energy has synergistic effect for the better photocatalytic performance.展开更多
Sepiolite@LDH(Sep@LDH)composites were designed and prepared based on the assembly of layered double hydroxides(LDH)on acidified sepiolites(Sep)for the simultaneous photocatalytic degradation of methyl orange(MO)and me...Sepiolite@LDH(Sep@LDH)composites were designed and prepared based on the assembly of layered double hydroxides(LDH)on acidified sepiolites(Sep)for the simultaneous photocatalytic degradation of methyl orange(MO)and methylene blue(MB).The structure,morphology,texture,optical properties,and photocatalytic performance of the prepared Sep@LDH were studied in detail.Among the Sep@LDH composites,Sep4@LDH(4.0 g Sep)exhibited the highest photocatalytic activity under visible‐light irradiation,which could be attributed to its large surface area,high crystallinity,and plentiful active sites on its surface.The photodegradation of the dyes followed a pseudo first‐order kinetic model(Langmuir‐Hinshelwood model),indicating that the copious and homogeneous active sites on the surface of the composites contributed to the high photocatalytic activity.The photodegradation mechanism was studied by examining the active species(^-OH,h+,and·O2^-anions)using appropriate scavengers.It was found that·OH radicals played a critical role in the photocatalytic process of MO and MB,where the generation of·OH radicals occurred on the electron/hole(e^-/h+)pairs on the surface of the Sep@LDH composites.展开更多
This paper adopts a medium pressure mercury lamp as light source and ZnO powder as catalyst to investigate the effect of radioactive wave length, component of phenol ZnO suspension and st...This paper adopts a medium pressure mercury lamp as light source and ZnO powder as catalyst to investigate the effect of radioactive wave length, component of phenol ZnO suspension and stirring method on phenol decomposition rate. The optimized conditions for the phenol decomposition are: (1) Radioactive wave length: 360~420 nm; (2)Phenol concentration in the suspension is less than 200 mg/l; (3)ZnO concentration is 3~8 g/l; (4)pH value is 5~7; (5)Reaction temperature is 25℃~40℃; (6)Agitation at atmosphere. Phenol can decompose in two ways: (1)Reacting with photogenerated cavity; (2)Reacting with ·OH radical.展开更多
A novel multi-tube photoreactor with 0.0188m3 valid reaction volume was constructed in pilot-scale. This rectangular reactor consisted of 13 regularly distributed silica glass tubes coating with TiO2 thin film photo-c...A novel multi-tube photoreactor with 0.0188m3 valid reaction volume was constructed in pilot-scale. This rectangular reactor consisted of 13 regularly distributed silica glass tubes coating with TiO2 thin film photo-catalyst. Total active area of TiO2 thin film is 0.3916m2. The ratio of surface area to volume achieves 20.8m-1. Photocatalytic experiment of phenol red demonstrates that the apparent reaction rate constant (k) is 0.074 65 h-1 and 0.16502h-1 for reaction system with and without micro-bubbles mixing. The corresponding apparent quantum efficiency (a) is 8.1771 X 10-7g.J-1 and 4.9036 x 10-7g-J-1, respectively. COD value of reactant could decrease to 17mg.L-1 and high performance liquid chromatography (HPLC) only shows two absorption peaks in 24 h pho-tocatalytic process time, so this photoreactor has good photomineralization effect. Experimental results reveal that photocatalytic destruction of organics is possible by using the multi-tube photoreactor.展开更多
In order to realize the photocatalysis of TiO2 in the sunlight and directly apply it to waste water treatment, the Gd-doped TiO2 nanofibre was synthesized using two-step synthesis method as follows: Firstly, potassium...In order to realize the photocatalysis of TiO2 in the sunlight and directly apply it to waste water treatment, the Gd-doped TiO2 nanofibre was synthesized using two-step synthesis method as follows: Firstly, potassium carbonate, titanium dioxide and proper gadolinium oxide (dopant) were calcined in the muffle at high temperature and the doped gadolinium K2Ti4O9 fibres were obtained; secondly, the fibre was heated using glycerol as solvent until Gd-doped TiO2 nanofibres were obtained. The synthesized samples were characterized using scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that Gd-doped TiO2 nanofibre heat-treated by glycerol solvent can inhibit the agglomeration, so the grain diameter of the fibre is smaller than that without heat-treated with glycerol. Meanwhile, the diameter of the fibre decreases with the increase of the heating temperature and time. 97% 98% of Gd-doped TiO2 nanofibre is anatase. The photocatalysis results showed that the photocatalysis activity of Gd-doped TiO2 nanofibre is just a little lower than that of TiO2 powder.展开更多
The experimental process of preparing TiO 2 activated carbon complex membranes with activated carbon powder as main carrier, PTFE as binder and wire netting as matrix is described in detail, and both photo catalysis a...The experimental process of preparing TiO 2 activated carbon complex membranes with activated carbon powder as main carrier, PTFE as binder and wire netting as matrix is described in detail, and both photo catalysis and photo electro catalysis are measured to study the properties of complex membranes. Experimental results show that the photo catalytic activity of the membranes is high and stable in the process of treating Rhodamine B; the application of an electric field accelerates the speed of photo catalysis, and the efficiency of photo catalysis is increased 2.5 times when the applied voltage is 0.8 V; and the degradation of Rhodamine B follows the dynamics of first order reaction. It is concluded from the discussion of experimental results that the preparation process of TiO 2 activated carbon complex membranes is a simple low cost process suitable for large scale application.展开更多
In the present study,zinc molybdate(β‐ZnMoO4)and graphitic carbon nitride(g‐C3N4)‐modifiedβ‐ZnMoO4(β‐ZnMoO4/g‐C3N4)were prepared to decontaminate aqueous solutions from the antibiotic sulfamethazine(SMZ).Our ...In the present study,zinc molybdate(β‐ZnMoO4)and graphitic carbon nitride(g‐C3N4)‐modifiedβ‐ZnMoO4(β‐ZnMoO4/g‐C3N4)were prepared to decontaminate aqueous solutions from the antibiotic sulfamethazine(SMZ).Our results revealed that the hydrothermal synthesis method greatly influenced the photocatalytic activity of the resultant catalysts.The pristineβ‐ZnMoO4samples obtained under more intensive synthesis conditions(24h at280°C)showed higher photocatalytic activity than that prepared for12h at180°C(denotedβ‐ZnMoO4‐180).In the case of in situ hydrothermal synthesis ofβ‐ZnMoO4/g‐C3N4,a surface‐modified sample was only obtained under the reaction conditions of180°C for12h.Compared with the sheet‐likeβ‐ZnMoO4‐180sample,theβ‐ZnMoO4‐180/g‐C3N4composite showed enhanced photocatalytic activity for the degradation of SMZ.By contrast,the hydrothermal reaction at280°C caused the gradual decomposition of g‐C3N4.It is believed that the structural incorporation of g‐C3N4intoβ‐ZnMoO4at280°C might disrupt the crystal growth,thereby deteriorating the performance of the composite catalysts formed at this temperature.For the composite catalysts prepared by the ultrasonic method,a remarkable increase in the degradation rate of SMZ was only observed at a high g‐C3N4content of8mol%.The photocatalytic degradation of SMZ byβ‐ZnMoO4‐180/g‐C3N4composite catalysts followed pseudo‐first‐order kinetics.Further study of the photocatalytic mechanism revealed that holes and superoxide radicals were the dominant oxidative species in the photodegradation process.The enhanced photocatalytic performance of the composites was attributed to the higher separation efficiency of the photogenerated electron‐hole pairs at heterogeneous junctions.The degradation intermediates of SMZ were detected by liquid chromatography‐mass spectrometry,from which plausible reaction pathways for the photodegradation of SMZ were proposed.Our results indicated that the synthesis method for g‐C3N4composites should be carefully selected to achieve superior photocatalytic performance.展开更多
TiO2 is the most photoactive material because of its superstrong photooxidizing ability,and TiO2 photocatalysis has been widely applied in sustainable water treatment and environmental remediation.However,poor sunligh...TiO2 is the most photoactive material because of its superstrong photooxidizing ability,and TiO2 photocatalysis has been widely applied in sustainable water treatment and environmental remediation.However,poor sunlight or visible-light harvesting efficiency and fast recombination rate of the photogenerated charge carriers severely limit the practical applications of TiO2.To overcome these problems,the present work demonstrates a facile in-situ co-condensation method combined with hydrothermal treatment to prepare a series of graphitized carbon/TiO2 composite photocatalysts,and anatase TiO2 phase andp-p-conjugated polycyclic aromatic carbon structure are created simultaneously.As-prepared TiO2/C composites exhibit remarkably high visible-light photocatalytic activity in the degradation of aqueous emerging phenolic pollutants,acetaminophen(APAP)and methylparaben(MPB),and apparent rate constant of the TiO2/C composite with carbon doping level of 10.3%for APAP and MPB removal is 7.6 and 2.8 times higher than that of bare TiO2,and 6.2 and 2.6 times higher than that of Degussa P25 TiO2.Based on the results of photoelectrochemical experiments,indirect chemical probe measurements,and ESR spectroscopy,it is verified that doping TiO2 with graphitized carbon is responsible for this enhanced photocatalytic activity,which renders the improved visible-light harvesting ability,the accelerated separation of the photogenerated charge carriers,and enlarged BET surface areas.Through analyzing the intermediates yielded in the photodegradation process,the pathway of visible-light photocatalytic degradation of APAP and MPB over the TiO2/C composite is proposed.展开更多
A novel metallo-organic chemical vapor deposition (MOCVD) technique has been applied to the preparation of the photocatalytic titanium dioxide supported on activated carbon. The effects of various condition parameters...A novel metallo-organic chemical vapor deposition (MOCVD) technique has been applied to the preparation of the photocatalytic titanium dioxide supported on activated carbon. The effects of various condition parameters such as carrier gas flow rate, source temperature and deposition temperature on the deposition rate were investigated. The maximum deposition rate of 8.2 mg/(g.h) was obtained under conditions of carrier gas flow rate of 400 ml/min, source temperature of 423 K and deposition temperature of 913 K. The deposition rate followed Arrhenius behavior at temperature of 753 K to 913 K, corresponding to activation energy Ea of 51.09 kJ/mol. TiO2 existed only in anatase phase when the deposition temperature was 773 K to 973 K. With increase of deposition temperature from 1073 K to 1273 K, the rutile content sharply increased from 7% to 70%. It was found that a deposition temperature of 773 K and a higher source temperature of 448 K resulted in finely dispersed TiO2 particles, which were mainly in the range of 10-20 nm.展开更多
基金supported by the National Natural Science Foundation of China(21577132)Bing-Jie Ni acknowledges the support of the Australian Research Council(ARC)Future Fellowship(FT160100195)~~
文摘Employing photothermal conversion to improve the photocatalytic activity of g-C3N4 is rarely reported previously. Herein, different ratios of g-C3N4/Bi2S3 heterojunction materials are synthesized by a facile ultrasonic method. Advanced characterizations such as X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy are employed to analyze the morphology and structure of the prepared materials. Compared with sole counterparts, the heterojunction materials CN-Bi S-2 exhibit significantly enhanced photocatalytic performance, which is 2.05-fold as g-C3N4 and 4.42-fold as Bi2S3. A possible degradation pathway of methylene blue(MB) was proposed. Based on the photoproduced high-energy electrons and photothermal effect of Bi2S3, the transfer and separation of electron-hole pairs are greatly enhanced and more active species are produced. In addition, the relatively high utilization efficiency of solar energy has synergistic effect for the better photocatalytic performance.
基金supported by the Joint Research Program of Hunan Provincial Natural Science Foundation(Xiangtan)of China(2016JJ5030)Hunan 2011 Collaborative Innovation Center of Chemical Engineering&Technology with Environmental Benignity and Effective Resource Utilization and General project of Hunan Provincial Education Department(17C1526)+1 种基金PhD Startup Foundation of Xiangtan University(17QDZ05)Xiangtan University undergraduate innovative experiment program(2017XJ067)~~
文摘Sepiolite@LDH(Sep@LDH)composites were designed and prepared based on the assembly of layered double hydroxides(LDH)on acidified sepiolites(Sep)for the simultaneous photocatalytic degradation of methyl orange(MO)and methylene blue(MB).The structure,morphology,texture,optical properties,and photocatalytic performance of the prepared Sep@LDH were studied in detail.Among the Sep@LDH composites,Sep4@LDH(4.0 g Sep)exhibited the highest photocatalytic activity under visible‐light irradiation,which could be attributed to its large surface area,high crystallinity,and plentiful active sites on its surface.The photodegradation of the dyes followed a pseudo first‐order kinetic model(Langmuir‐Hinshelwood model),indicating that the copious and homogeneous active sites on the surface of the composites contributed to the high photocatalytic activity.The photodegradation mechanism was studied by examining the active species(^-OH,h+,and·O2^-anions)using appropriate scavengers.It was found that·OH radicals played a critical role in the photocatalytic process of MO and MB,where the generation of·OH radicals occurred on the electron/hole(e^-/h+)pairs on the surface of the Sep@LDH composites.
文摘This paper adopts a medium pressure mercury lamp as light source and ZnO powder as catalyst to investigate the effect of radioactive wave length, component of phenol ZnO suspension and stirring method on phenol decomposition rate. The optimized conditions for the phenol decomposition are: (1) Radioactive wave length: 360~420 nm; (2)Phenol concentration in the suspension is less than 200 mg/l; (3)ZnO concentration is 3~8 g/l; (4)pH value is 5~7; (5)Reaction temperature is 25℃~40℃; (6)Agitation at atmosphere. Phenol can decompose in two ways: (1)Reacting with photogenerated cavity; (2)Reacting with ·OH radical.
基金Supported by the Natural Science Foundation of Jiangsu Province (JH01-010).
文摘A novel multi-tube photoreactor with 0.0188m3 valid reaction volume was constructed in pilot-scale. This rectangular reactor consisted of 13 regularly distributed silica glass tubes coating with TiO2 thin film photo-catalyst. Total active area of TiO2 thin film is 0.3916m2. The ratio of surface area to volume achieves 20.8m-1. Photocatalytic experiment of phenol red demonstrates that the apparent reaction rate constant (k) is 0.074 65 h-1 and 0.16502h-1 for reaction system with and without micro-bubbles mixing. The corresponding apparent quantum efficiency (a) is 8.1771 X 10-7g.J-1 and 4.9036 x 10-7g-J-1, respectively. COD value of reactant could decrease to 17mg.L-1 and high performance liquid chromatography (HPLC) only shows two absorption peaks in 24 h pho-tocatalytic process time, so this photoreactor has good photomineralization effect. Experimental results reveal that photocatalytic destruction of organics is possible by using the multi-tube photoreactor.
文摘In order to realize the photocatalysis of TiO2 in the sunlight and directly apply it to waste water treatment, the Gd-doped TiO2 nanofibre was synthesized using two-step synthesis method as follows: Firstly, potassium carbonate, titanium dioxide and proper gadolinium oxide (dopant) were calcined in the muffle at high temperature and the doped gadolinium K2Ti4O9 fibres were obtained; secondly, the fibre was heated using glycerol as solvent until Gd-doped TiO2 nanofibres were obtained. The synthesized samples were characterized using scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results show that Gd-doped TiO2 nanofibre heat-treated by glycerol solvent can inhibit the agglomeration, so the grain diameter of the fibre is smaller than that without heat-treated with glycerol. Meanwhile, the diameter of the fibre decreases with the increase of the heating temperature and time. 97% 98% of Gd-doped TiO2 nanofibre is anatase. The photocatalysis results showed that the photocatalysis activity of Gd-doped TiO2 nanofibre is just a little lower than that of TiO2 powder.
文摘The experimental process of preparing TiO 2 activated carbon complex membranes with activated carbon powder as main carrier, PTFE as binder and wire netting as matrix is described in detail, and both photo catalysis and photo electro catalysis are measured to study the properties of complex membranes. Experimental results show that the photo catalytic activity of the membranes is high and stable in the process of treating Rhodamine B; the application of an electric field accelerates the speed of photo catalysis, and the efficiency of photo catalysis is increased 2.5 times when the applied voltage is 0.8 V; and the degradation of Rhodamine B follows the dynamics of first order reaction. It is concluded from the discussion of experimental results that the preparation process of TiO 2 activated carbon complex membranes is a simple low cost process suitable for large scale application.
基金supported by the National Natural Science Foundation of China(51778505)the grants from Hubei Province of China(Special Grant for Technological Innovation(2016ACA162)the Natural Science Foundation,2015CFA017)~~
文摘In the present study,zinc molybdate(β‐ZnMoO4)and graphitic carbon nitride(g‐C3N4)‐modifiedβ‐ZnMoO4(β‐ZnMoO4/g‐C3N4)were prepared to decontaminate aqueous solutions from the antibiotic sulfamethazine(SMZ).Our results revealed that the hydrothermal synthesis method greatly influenced the photocatalytic activity of the resultant catalysts.The pristineβ‐ZnMoO4samples obtained under more intensive synthesis conditions(24h at280°C)showed higher photocatalytic activity than that prepared for12h at180°C(denotedβ‐ZnMoO4‐180).In the case of in situ hydrothermal synthesis ofβ‐ZnMoO4/g‐C3N4,a surface‐modified sample was only obtained under the reaction conditions of180°C for12h.Compared with the sheet‐likeβ‐ZnMoO4‐180sample,theβ‐ZnMoO4‐180/g‐C3N4composite showed enhanced photocatalytic activity for the degradation of SMZ.By contrast,the hydrothermal reaction at280°C caused the gradual decomposition of g‐C3N4.It is believed that the structural incorporation of g‐C3N4intoβ‐ZnMoO4at280°C might disrupt the crystal growth,thereby deteriorating the performance of the composite catalysts formed at this temperature.For the composite catalysts prepared by the ultrasonic method,a remarkable increase in the degradation rate of SMZ was only observed at a high g‐C3N4content of8mol%.The photocatalytic degradation of SMZ byβ‐ZnMoO4‐180/g‐C3N4composite catalysts followed pseudo‐first‐order kinetics.Further study of the photocatalytic mechanism revealed that holes and superoxide radicals were the dominant oxidative species in the photodegradation process.The enhanced photocatalytic performance of the composites was attributed to the higher separation efficiency of the photogenerated electron‐hole pairs at heterogeneous junctions.The degradation intermediates of SMZ were detected by liquid chromatography‐mass spectrometry,from which plausible reaction pathways for the photodegradation of SMZ were proposed.Our results indicated that the synthesis method for g‐C3N4composites should be carefully selected to achieve superior photocatalytic performance.
文摘TiO2 is the most photoactive material because of its superstrong photooxidizing ability,and TiO2 photocatalysis has been widely applied in sustainable water treatment and environmental remediation.However,poor sunlight or visible-light harvesting efficiency and fast recombination rate of the photogenerated charge carriers severely limit the practical applications of TiO2.To overcome these problems,the present work demonstrates a facile in-situ co-condensation method combined with hydrothermal treatment to prepare a series of graphitized carbon/TiO2 composite photocatalysts,and anatase TiO2 phase andp-p-conjugated polycyclic aromatic carbon structure are created simultaneously.As-prepared TiO2/C composites exhibit remarkably high visible-light photocatalytic activity in the degradation of aqueous emerging phenolic pollutants,acetaminophen(APAP)and methylparaben(MPB),and apparent rate constant of the TiO2/C composite with carbon doping level of 10.3%for APAP and MPB removal is 7.6 and 2.8 times higher than that of bare TiO2,and 6.2 and 2.6 times higher than that of Degussa P25 TiO2.Based on the results of photoelectrochemical experiments,indirect chemical probe measurements,and ESR spectroscopy,it is verified that doping TiO2 with graphitized carbon is responsible for this enhanced photocatalytic activity,which renders the improved visible-light harvesting ability,the accelerated separation of the photogenerated charge carriers,and enlarged BET surface areas.Through analyzing the intermediates yielded in the photodegradation process,the pathway of visible-light photocatalytic degradation of APAP and MPB over the TiO2/C composite is proposed.
文摘A novel metallo-organic chemical vapor deposition (MOCVD) technique has been applied to the preparation of the photocatalytic titanium dioxide supported on activated carbon. The effects of various condition parameters such as carrier gas flow rate, source temperature and deposition temperature on the deposition rate were investigated. The maximum deposition rate of 8.2 mg/(g.h) was obtained under conditions of carrier gas flow rate of 400 ml/min, source temperature of 423 K and deposition temperature of 913 K. The deposition rate followed Arrhenius behavior at temperature of 753 K to 913 K, corresponding to activation energy Ea of 51.09 kJ/mol. TiO2 existed only in anatase phase when the deposition temperature was 773 K to 973 K. With increase of deposition temperature from 1073 K to 1273 K, the rutile content sharply increased from 7% to 70%. It was found that a deposition temperature of 773 K and a higher source temperature of 448 K resulted in finely dispersed TiO2 particles, which were mainly in the range of 10-20 nm.