Using the Keldysh-Green function,we present a theoretical study on the electron transport properties of two coupled quantum dots under optical pumping. Plateaus in the I-V curve and resonant peaks in the transmission ...Using the Keldysh-Green function,we present a theoretical study on the electron transport properties of two coupled quantum dots under optical pumping. Plateaus in the I-V curve and resonant peaks in the transmission coefficient occur and can be explained by the local electron density of states in the quantum dots. The effects of the optical pumping frequency and intensity on the transport properties of the system are also discussed. The electron dynamical localization phenomenon occurs when the optical pumping frequency is equal to the discrete hole energy level. This result can be used to realize optical control switches.展开更多
The measurement techniques of femtosecond spectroscopy are effective method to investigate ultrafast dynamics, they are widely used in the fields of physics, chemistry and biology. In this paper, the principle, exper...The measurement techniques of femtosecond spectroscopy are effective method to investigate ultrafast dynamics, they are widely used in the fields of physics, chemistry and biology. In this paper, the principle, experiment setup and the approaches to deal with the experiment data were presented. Then different measurement techniques such as transient absorption spectroscopy, photon echoes, optical Kerr effect and degenerate four-wave mixing were explained with special examples. At last, the application prospect of measurement techniques of femtosecond spectroscopy was forecasted.展开更多
Recent progress in ultrafast lasers,ultrafast X-rays and ultrafast electron beams has made it possible to watch the motion of atoms in real time through pumpprobe technique.In this review,we focus on how the molecular...Recent progress in ultrafast lasers,ultrafast X-rays and ultrafast electron beams has made it possible to watch the motion of atoms in real time through pumpprobe technique.In this review,we focus on how the molecular dynamics can be studied with ultrafast electron diffraction where the dynamics is initiated by a pumping laser and then probed by pulsed electron beams.This technique allows one to track the molecular dynamics with femtosecond time resolution and Angstr6m spatial resolution.We present the basic physics and latest development of this technique.Representative applications of ultrafast electron diffraction in studies of laser-induced molecular dynamics are also discussed.This table-top technique is complementary to X-ray free-electron laser and we expect it to have a strong impact in studies of chemical dynamics.展开更多
We investigate the pump-depleted model of a dual-pump fiber optical parametric amplifier(FOPA) with Raman effect.As bandwidth increases,the gain profile of the distorted FOPA would be impacted seriously.Under the wide...We investigate the pump-depleted model of a dual-pump fiber optical parametric amplifier(FOPA) with Raman effect.As bandwidth increases,the gain profile of the distorted FOPA would be impacted seriously.Under the widebands,especially when the pump separation is large,zero dispersion wavelength(ZDW) fluctuation is another factor which can not be neglected.Numerical simulations with these comprehensive factors are mainly analyzed to obtain their influence on gain characteristics.Saturated gain spectrum is also discussed in detail.展开更多
We employ optical pump-terahertz probe spectroscopy to investigate the composition-dependent photoconductivity in ternary CdSxSel_x nanobelts. The observed carrier dynamics of CdS nanobelts display much shorter lifeti...We employ optical pump-terahertz probe spectroscopy to investigate the composition-dependent photoconductivity in ternary CdSxSel_x nanobelts. The observed carrier dynamics of CdS nanobelts display much shorter lifetime than those of ternary CdSKSel_K nanobelts. This indicates the implementation of CdS nanobelts as ultrafast switching devices with a switching speed potentially up to 46.7 GHz. Surprisingly, ternary CdS,-Sel_x nanobelts are found to exhibit much higher photoconductivity than binary CdS and CdSe. This is attributed to the higher photocarrier densities in ternary compounds. In addition, the presence of Se in samples resulted in prominent CdSe-like transverse optical (TO) phonon modes due to electron-phonon interactions. The strength of this mode shows a large drop upon photoexcitation but recovers gradually with time. These results demonstrated that growth of ternary nanostructures can be utilized to alleviate the high surface defect density in nanostructures and improve their photoconductivity.展开更多
We demonstrate experimentally the population inversion between 7S1/2 and 6P3/2 levels of cesium in thermal cesium cell with a 455.5 nm pumping laser.We calculate the relative population probabilities at each level the...We demonstrate experimentally the population inversion between 7S1/2 and 6P3/2 levels of cesium in thermal cesium cell with a 455.5 nm pumping laser.We calculate the relative population probabilities at each level theoretically with the density matrix method.In a steady state,5.8% atoms are at 7S1/2 level and 2.9% at 6P3/2 level,which builds up the population inversion between the two levels.We obtain the fluorescence spectra produced in thermal cesium cell in our experiment.The measured relative intensity of each available fluorescence spectral line in the experiment agrees very well with the theoretical result.The demonstrated population inversion between 7S1/2 and 6P3/2 levels can be used to construct an active optical clock of four-level system with a wavelength of 1469.9 nm.展开更多
In this paper, a dynamic optical arbitrary waveform generator(OAWG) based on cross phase modulation(XPM) is proposed. According to the characteristics of XPM, the nonlinear phase shift of signal can be changed along w...In this paper, a dynamic optical arbitrary waveform generator(OAWG) based on cross phase modulation(XPM) is proposed. According to the characteristics of XPM, the nonlinear phase shift of signal can be changed along with the pump power. The amplitude of signal can be changed by controlling the phase shift at one arm of a Mach-Zehnder interferometer(MZI) using XPM effect between signal and pump. Therefore, the phase and amplitude of the optical frequency comb(OFC) can be controlled by two pump arrays. As a result, different kinds of waveforms can be synthesized. Due to the ultrafast response of XPM, the generated waveform could be dynamically updated with an ultrafast frequency. The waveform fidelity is affected by the updating frequency.展开更多
文摘Using the Keldysh-Green function,we present a theoretical study on the electron transport properties of two coupled quantum dots under optical pumping. Plateaus in the I-V curve and resonant peaks in the transmission coefficient occur and can be explained by the local electron density of states in the quantum dots. The effects of the optical pumping frequency and intensity on the transport properties of the system are also discussed. The electron dynamical localization phenomenon occurs when the optical pumping frequency is equal to the discrete hole energy level. This result can be used to realize optical control switches.
文摘The measurement techniques of femtosecond spectroscopy are effective method to investigate ultrafast dynamics, they are widely used in the fields of physics, chemistry and biology. In this paper, the principle, experiment setup and the approaches to deal with the experiment data were presented. Then different measurement techniques such as transient absorption spectroscopy, photon echoes, optical Kerr effect and degenerate four-wave mixing were explained with special examples. At last, the application prospect of measurement techniques of femtosecond spectroscopy was forecasted.
基金The work was supported by the National Natural Science Foundation of China(No.11925505).
文摘Recent progress in ultrafast lasers,ultrafast X-rays and ultrafast electron beams has made it possible to watch the motion of atoms in real time through pumpprobe technique.In this review,we focus on how the molecular dynamics can be studied with ultrafast electron diffraction where the dynamics is initiated by a pumping laser and then probed by pulsed electron beams.This technique allows one to track the molecular dynamics with femtosecond time resolution and Angstr6m spatial resolution.We present the basic physics and latest development of this technique.Representative applications of ultrafast electron diffraction in studies of laser-induced molecular dynamics are also discussed.This table-top technique is complementary to X-ray free-electron laser and we expect it to have a strong impact in studies of chemical dynamics.
基金supported by the National Key Basic Research Special Foundation of China (No.2010CB328304)the National Natural Science Foundation of China (No.60807022)+1 种基金the Key Grant of Chinese Ministry of Education (No.109015)the Discipline Co-construction Project of Beijing Municipal Commission of Education (No.YB20081001301)
文摘We investigate the pump-depleted model of a dual-pump fiber optical parametric amplifier(FOPA) with Raman effect.As bandwidth increases,the gain profile of the distorted FOPA would be impacted seriously.Under the widebands,especially when the pump separation is large,zero dispersion wavelength(ZDW) fluctuation is another factor which can not be neglected.Numerical simulations with these comprehensive factors are mainly analyzed to obtain their influence on gain characteristics.Saturated gain spectrum is also discussed in detail.
文摘We employ optical pump-terahertz probe spectroscopy to investigate the composition-dependent photoconductivity in ternary CdSxSel_x nanobelts. The observed carrier dynamics of CdS nanobelts display much shorter lifetime than those of ternary CdSKSel_K nanobelts. This indicates the implementation of CdS nanobelts as ultrafast switching devices with a switching speed potentially up to 46.7 GHz. Surprisingly, ternary CdS,-Sel_x nanobelts are found to exhibit much higher photoconductivity than binary CdS and CdSe. This is attributed to the higher photocarrier densities in ternary compounds. In addition, the presence of Se in samples resulted in prominent CdSe-like transverse optical (TO) phonon modes due to electron-phonon interactions. The strength of this mode shows a large drop upon photoexcitation but recovers gradually with time. These results demonstrated that growth of ternary nanostructures can be utilized to alleviate the high surface defect density in nanostructures and improve their photoconductivity.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10874009 and 11074011)
文摘We demonstrate experimentally the population inversion between 7S1/2 and 6P3/2 levels of cesium in thermal cesium cell with a 455.5 nm pumping laser.We calculate the relative population probabilities at each level theoretically with the density matrix method.In a steady state,5.8% atoms are at 7S1/2 level and 2.9% at 6P3/2 level,which builds up the population inversion between the two levels.We obtain the fluorescence spectra produced in thermal cesium cell in our experiment.The measured relative intensity of each available fluorescence spectral line in the experiment agrees very well with the theoretical result.The demonstrated population inversion between 7S1/2 and 6P3/2 levels can be used to construct an active optical clock of four-level system with a wavelength of 1469.9 nm.
基金supported by the National Natural Science Foundation of China(No.61377075)Program for New Century Excellent Talents in University(No.NCET-07-0611)
文摘In this paper, a dynamic optical arbitrary waveform generator(OAWG) based on cross phase modulation(XPM) is proposed. According to the characteristics of XPM, the nonlinear phase shift of signal can be changed along with the pump power. The amplitude of signal can be changed by controlling the phase shift at one arm of a Mach-Zehnder interferometer(MZI) using XPM effect between signal and pump. Therefore, the phase and amplitude of the optical frequency comb(OFC) can be controlled by two pump arrays. As a result, different kinds of waveforms can be synthesized. Due to the ultrafast response of XPM, the generated waveform could be dynamically updated with an ultrafast frequency. The waveform fidelity is affected by the updating frequency.