This paper deals with vacuum UV optical coatings for micro mirror applications. High reflecting low-stress optical coatings have been developed for the next-generation of micro mechanical mirrors. The optimized metal ...This paper deals with vacuum UV optical coatings for micro mirror applications. High reflecting low-stress optical coatings have been developed for the next-generation of micro mechanical mirrors. The optimized metal systems are applicable in the VUV spectral region and can be integrated in the technology of MOEMS, such as spatial light modulators (SLM) and micro scanning mirrors.展开更多
The demand to enhance the optical resolution, to structure and observe ever smaller details, has pushed the way towards the EUV and soft X-rays. Induced mainly by the production of more powerful electronic circuits wi...The demand to enhance the optical resolution, to structure and observe ever smaller details, has pushed the way towards the EUV and soft X-rays. Induced mainly by the production of more powerful electronic circuits with the aid of projection lithography, optics developments in recent years can be characterized by the use of electromagnetic radiation with smaller wavelength. The good prospects of the EUV and soft X-rays for next generation lithography systems (λ=13.5 nm), microscopy in the “water window” (λ=2.3~4.4 nm), astronomy (λ=5~31 nm), spectroscopy, plasma diagnostics and EUV/soft X-ray laser research have led to considerable progress in the development of different multilayer optics. Since optical systems in the EUV/soft X-ray spectral region consist of several mirror elements a maximum reflectivity of each multilayer is essential for a high throughput. This paper covers recent results of the enhanced spectral behavior of Mo/Si, Cr/Sc and Sc/Si multilayer optics.展开更多
New applications in optoelectronics, photonics, telecommunication, displays, optical data processing, biomedicine, sensors, energy control, automobile, aerospace, and architecture stimulation are important development...New applications in optoelectronics, photonics, telecommunication, displays, optical data processing, biomedicine, sensors, energy control, automobile, aerospace, and architecture stimulation are important developments in physics and technology of optical coatings. This paper will focus on the latest advances in the areas of new optical film systems and devices, new optical coating materials and film fabrication techniques, process control and monitoring, and different advanced applications. Particularly, focus is on optical films that combine optical design with microstructural features tailored on the nanometer and micrometer scales. Evaluation of film stability and integrity in harsh industrial environments and their compatibility with organic polymers are important as well.展开更多
In the rapid development course of laser technology and modern optics, optical metrology continuously gains importance for the quality management in the industrial production environment and also for research in optic...In the rapid development course of laser technology and modern optics, optical metrology continuously gains importance for the quality management in the industrial production environment and also for research in optical coatings. Besides absorption and scatter losses, the spectral characteristics and laser induced damage thresholds are considered as common quality factors for coated optical components and often define the optimization targets for new products and applications. Also, these quality parameters are the basis for the comparison of commercial optics and can be found in the product catalogues of most manufacturers of optical components. As a consequence, standardization of characterisation procedures for these fundamental properties evolved to a crucial point for the optics industry. During the last decade, adapted standard measurement techniques have been elaborated and discussed by representatives from many industrial companies and research institutes within working groups of the International Organisation for Standardization (ISO). In this contribution, the current state of standardized characterisation techniques for optical coatings is summarised. Selected standards for the measurement of absorption (ISO 11551), scattering (ISO 13696) and laser induced damage thresholds (ISO 11254, Parts 1 and 2) will be described and discussed in view of their applicability and reproducibility. The report will be concluded by an outlook on the current projects and future tasks of standardization in optics characterisation.展开更多
This contribution is focused on applications of spectroscopic methods for the precise control of deposition processes. In this context, the present study gives a review on selected combinations of conventional and ion...This contribution is focused on applications of spectroscopic methods for the precise control of deposition processes. In this context, the present study gives a review on selected combinations of conventional and ion deposition techniques with different broadband online spectrophotometric systems. Besides two systems operating in the VIS- and NIR-spectral range in combination with ion processes, also a monochromator system developed for conventional deposition processes in the DUV/VUV-spectral range will be discussed. The considerations will be concluded by a comparison of the major advantages of the specific combinations of processes with online monitoring concepts and by a brief outlook concerning future challenges.展开更多
Surface thermal lensing technique was developed into a high-sensitive apparatus for weak absorption test and defect analysis of optical coatings. A continuous-wave 1 064 nm Nd:YAG laser and a He-Ne laser were employed...Surface thermal lensing technique was developed into a high-sensitive apparatus for weak absorption test and defect analysis of optical coatings. A continuous-wave 1 064 nm Nd:YAG laser and a He-Ne laser were employed as pump source and probe source, respectively. Low noise photoelectrical components and a lock-in amplifier were used for photo-thermal deformation signal detection. In order to improve sensitivity, the apparatus configuration was optimized by choosing appropriate parameters, including pump beam spot size, chopper frequency, detection distance, waist radius and position of probe beam. Coating samples were mounted on a x-y stage. Different procedures, such as single spot, linear scan and 2-dimension area scan, could be performed manually or automatically. Various optical coatings were prepared by both electron beam evaporation and ion beam sputtering deposition. High sensitivity was obtained and low to 1×10 -7 weak absorption was tested in low-loss coating samples. For the sensitivity extreme of the system, 1×10 -8 absorption was reason out to be measured by surface thermal lensing technique. Very small standard deviation was achieved for the reproducibility evaluation. Moreover, a spatial resolution of 25 micron was proved according to the area scan which traced out the profile of photo-thermal defects inside optical coatings. The system was employed in the analyses of optical absorption, absorption uniformity and defect characterization, and revealed the relationship between laser-induced damage and absorption of optical coatings.展开更多
Infrared optical coatings in SITP (Shanghai Institute of Technical Physics) mainly cover the spectrum range from 0.7 μm to 15 μm, and visible and near-UV range are also been included. The coatings are mainly used fo...Infrared optical coatings in SITP (Shanghai Institute of Technical Physics) mainly cover the spectrum range from 0.7 μm to 15 μm, and visible and near-UV range are also been included. The coatings are mainly used for metal-reflectance mirrors, Anti-reflection(AR) lens and windows, filters, and dichroic beam splitters. Coatings passed some dependability tests. These optical coated devices usually consist in a remote observing instrument. Most coating materials are commercial products. And one kind of special material PbTe is made by ourselves. Some main results of our research department are reported.展开更多
Fiber laser is the future development direction for the high energy lasers. This paper describs two kinds of optical coatings for fiber laser, including long and short wave pass filters. The one characteristic of fibe...Fiber laser is the future development direction for the high energy lasers. This paper describs two kinds of optical coatings for fiber laser, including long and short wave pass filters. The one characteristic of fiber laser coatings lies in that coatings should separate two closely wavelength light including laser pump wavelength (980 nm) and laser irradiation wavelength(1 050~1 100 nm). At the same time, the coatings should have high laser damage threshold.展开更多
Reengineering the refractive index profile of inhomogeneous coatings is a troublesome task. Multiplicity of solutions may significantly reduced by providing additional information. For this reason an in-situ broadband...Reengineering the refractive index profile of inhomogeneous coatings is a troublesome task. Multiplicity of solutions may significantly reduced by providing additional information. For this reason an in-situ broadband monitoring system was developed to measure the transmittance of the growing film directly at the rotating substrate. For characterization of these coatings, a new model was developed, which significantly reduces the number of parameters. The refractive index profile may be described by a proper number of equally spaced volume fraction values using the Bruggeman effective media approach. A good initial approximation of the refractive index profile can be generated based on deposition rates for both materials recorded with quartz crystal monitor during manufacturing. During the optimization process, a second order minimization algorithm was used to vary the refractive index profile of the whole coating and film thickness of the intermediate stages. Finally, a significantly improved accuracy of the modelled transmittance was achieved.展开更多
The coating of plastics for optical applications is intended to improve the mechanical durability of soft polymers and to serve an antireflection function. Usually a classic four-layer antireflection system is added o...The coating of plastics for optical applications is intended to improve the mechanical durability of soft polymers and to serve an antireflection function. Usually a classic four-layer antireflection system is added on top of a single-layer hard coating. With needle optimisation,an alternative coating design has been developed. Plasma ion assisted deposition was used to deposit coatings upon polymers. Uniform antireflection and high scratch resistance have been achieved.展开更多
文摘This paper deals with vacuum UV optical coatings for micro mirror applications. High reflecting low-stress optical coatings have been developed for the next-generation of micro mechanical mirrors. The optimized metal systems are applicable in the VUV spectral region and can be integrated in the technology of MOEMS, such as spatial light modulators (SLM) and micro scanning mirrors.
文摘The demand to enhance the optical resolution, to structure and observe ever smaller details, has pushed the way towards the EUV and soft X-rays. Induced mainly by the production of more powerful electronic circuits with the aid of projection lithography, optics developments in recent years can be characterized by the use of electromagnetic radiation with smaller wavelength. The good prospects of the EUV and soft X-rays for next generation lithography systems (λ=13.5 nm), microscopy in the “water window” (λ=2.3~4.4 nm), astronomy (λ=5~31 nm), spectroscopy, plasma diagnostics and EUV/soft X-ray laser research have led to considerable progress in the development of different multilayer optics. Since optical systems in the EUV/soft X-ray spectral region consist of several mirror elements a maximum reflectivity of each multilayer is essential for a high throughput. This paper covers recent results of the enhanced spectral behavior of Mo/Si, Cr/Sc and Sc/Si multilayer optics.
文摘New applications in optoelectronics, photonics, telecommunication, displays, optical data processing, biomedicine, sensors, energy control, automobile, aerospace, and architecture stimulation are important developments in physics and technology of optical coatings. This paper will focus on the latest advances in the areas of new optical film systems and devices, new optical coating materials and film fabrication techniques, process control and monitoring, and different advanced applications. Particularly, focus is on optical films that combine optical design with microstructural features tailored on the nanometer and micrometer scales. Evaluation of film stability and integrity in harsh industrial environments and their compatibility with organic polymers are important as well.
文摘In the rapid development course of laser technology and modern optics, optical metrology continuously gains importance for the quality management in the industrial production environment and also for research in optical coatings. Besides absorption and scatter losses, the spectral characteristics and laser induced damage thresholds are considered as common quality factors for coated optical components and often define the optimization targets for new products and applications. Also, these quality parameters are the basis for the comparison of commercial optics and can be found in the product catalogues of most manufacturers of optical components. As a consequence, standardization of characterisation procedures for these fundamental properties evolved to a crucial point for the optics industry. During the last decade, adapted standard measurement techniques have been elaborated and discussed by representatives from many industrial companies and research institutes within working groups of the International Organisation for Standardization (ISO). In this contribution, the current state of standardized characterisation techniques for optical coatings is summarised. Selected standards for the measurement of absorption (ISO 11551), scattering (ISO 13696) and laser induced damage thresholds (ISO 11254, Parts 1 and 2) will be described and discussed in view of their applicability and reproducibility. The report will be concluded by an outlook on the current projects and future tasks of standardization in optics characterisation.
文摘This contribution is focused on applications of spectroscopic methods for the precise control of deposition processes. In this context, the present study gives a review on selected combinations of conventional and ion deposition techniques with different broadband online spectrophotometric systems. Besides two systems operating in the VIS- and NIR-spectral range in combination with ion processes, also a monochromator system developed for conventional deposition processes in the DUV/VUV-spectral range will be discussed. The considerations will be concluded by a comparison of the major advantages of the specific combinations of processes with online monitoring concepts and by a brief outlook concerning future challenges.
文摘Surface thermal lensing technique was developed into a high-sensitive apparatus for weak absorption test and defect analysis of optical coatings. A continuous-wave 1 064 nm Nd:YAG laser and a He-Ne laser were employed as pump source and probe source, respectively. Low noise photoelectrical components and a lock-in amplifier were used for photo-thermal deformation signal detection. In order to improve sensitivity, the apparatus configuration was optimized by choosing appropriate parameters, including pump beam spot size, chopper frequency, detection distance, waist radius and position of probe beam. Coating samples were mounted on a x-y stage. Different procedures, such as single spot, linear scan and 2-dimension area scan, could be performed manually or automatically. Various optical coatings were prepared by both electron beam evaporation and ion beam sputtering deposition. High sensitivity was obtained and low to 1×10 -7 weak absorption was tested in low-loss coating samples. For the sensitivity extreme of the system, 1×10 -8 absorption was reason out to be measured by surface thermal lensing technique. Very small standard deviation was achieved for the reproducibility evaluation. Moreover, a spatial resolution of 25 micron was proved according to the area scan which traced out the profile of photo-thermal defects inside optical coatings. The system was employed in the analyses of optical absorption, absorption uniformity and defect characterization, and revealed the relationship between laser-induced damage and absorption of optical coatings.
文摘Infrared optical coatings in SITP (Shanghai Institute of Technical Physics) mainly cover the spectrum range from 0.7 μm to 15 μm, and visible and near-UV range are also been included. The coatings are mainly used for metal-reflectance mirrors, Anti-reflection(AR) lens and windows, filters, and dichroic beam splitters. Coatings passed some dependability tests. These optical coated devices usually consist in a remote observing instrument. Most coating materials are commercial products. And one kind of special material PbTe is made by ourselves. Some main results of our research department are reported.
文摘Fiber laser is the future development direction for the high energy lasers. This paper describs two kinds of optical coatings for fiber laser, including long and short wave pass filters. The one characteristic of fiber laser coatings lies in that coatings should separate two closely wavelength light including laser pump wavelength (980 nm) and laser irradiation wavelength(1 050~1 100 nm). At the same time, the coatings should have high laser damage threshold.
文摘Reengineering the refractive index profile of inhomogeneous coatings is a troublesome task. Multiplicity of solutions may significantly reduced by providing additional information. For this reason an in-situ broadband monitoring system was developed to measure the transmittance of the growing film directly at the rotating substrate. For characterization of these coatings, a new model was developed, which significantly reduces the number of parameters. The refractive index profile may be described by a proper number of equally spaced volume fraction values using the Bruggeman effective media approach. A good initial approximation of the refractive index profile can be generated based on deposition rates for both materials recorded with quartz crystal monitor during manufacturing. During the optimization process, a second order minimization algorithm was used to vary the refractive index profile of the whole coating and film thickness of the intermediate stages. Finally, a significantly improved accuracy of the modelled transmittance was achieved.
文摘The coating of plastics for optical applications is intended to improve the mechanical durability of soft polymers and to serve an antireflection function. Usually a classic four-layer antireflection system is added on top of a single-layer hard coating. With needle optimisation,an alternative coating design has been developed. Plasma ion assisted deposition was used to deposit coatings upon polymers. Uniform antireflection and high scratch resistance have been achieved.