A water-in-oil microemulsion made up of a cyclohexane/n-hexyl alcohol/Polyethylene glycol tertoctylphenyl/aqueous solution including Bi3+ and VO+3 ions yields the spherical BiVO4 precursors with the size from 5 to 300...A water-in-oil microemulsion made up of a cyclohexane/n-hexyl alcohol/Polyethylene glycol tertoctylphenyl/aqueous solution including Bi3+ and VO+3 ions yields the spherical BiVO4 precursors with the size from 5 to 300 nm. Well-crystallized monoclinic scheelite BiVO4 particles with nanometer or micrometer size are fabricated in control by heating microemulsion precursors under various temperatures. The corresponding nucleation and growth process of as-prepared samples has also been investigated via TEM,which demonstrates the detailed morphological evolution of nuclei inside the precursors. As-prepared BiVO4 photocatalysts exhibit enhanced photocatalytic activity under visible-light irradiation in comparison with the bulk BiVO4 prepared by solid-state reaction. The highest RB degrading efficiency of 98% in 180 min under visible-light irradiation is observed for the sample calcined at 600 °C.展开更多
It is shown that bright-dark Manakov solitons can be formed in biased guest-host photorefractive polymer when the total intensity of two components is much lower than the background illumination. The existing conditio...It is shown that bright-dark Manakov solitons can be formed in biased guest-host photorefractive polymer when the total intensity of two components is much lower than the background illumination. The existing conditions of bright-dark Manakov solitons are discussed in detail. The intensity profiles and dynamical evolutions of solitons are presented by numericaJ methods.展开更多
Recently,in-situ polymerization inside living cells has attracted much attention due to the efficient cellular internalization and elevated drug retention.However,the lack of tracking of the in-situ polymerization pro...Recently,in-situ polymerization inside living cells has attracted much attention due to the efficient cellular internalization and elevated drug retention.However,the lack of tracking of the in-situ polymerization process and the unclear effects of polymerization on cellular functions restrict its biomedical applications.Herein,we designed a Y-shaped diacetylene-containing lipidated peptide amphiphile(YDLPA1)with positive charges,which underwent in-situ polymerization initiated by reactive oxygen species in the intracellular microenvironment.In comparison,zwitterionic YDLPA2 and negatively charged Y-DLPA3 were polymerized in aqueous solution,but cannot polymerize in the intracellular microenvironment.The polymerized Y-DLPA1 with red fluorescence provides a platform to label cells for long-term tracking studies.This polymerization reaction induced tumor cell apoptosis,increased cell viscosity and decreased cell motility,which potentially inhibited tumor metastasis and served as a novel antitumor agent.This work provides a novel strategy to track in-situ polymerization process and modulate cell biofunctions.展开更多
基金supported by the Foundation for Outstanding Young Scientist of Shandong Province (BS2010CL049)the Program for New Cen-tury Excellent Talents in University (NCET-08-0511)
文摘A water-in-oil microemulsion made up of a cyclohexane/n-hexyl alcohol/Polyethylene glycol tertoctylphenyl/aqueous solution including Bi3+ and VO+3 ions yields the spherical BiVO4 precursors with the size from 5 to 300 nm. Well-crystallized monoclinic scheelite BiVO4 particles with nanometer or micrometer size are fabricated in control by heating microemulsion precursors under various temperatures. The corresponding nucleation and growth process of as-prepared samples has also been investigated via TEM,which demonstrates the detailed morphological evolution of nuclei inside the precursors. As-prepared BiVO4 photocatalysts exhibit enhanced photocatalytic activity under visible-light irradiation in comparison with the bulk BiVO4 prepared by solid-state reaction. The highest RB degrading efficiency of 98% in 180 min under visible-light irradiation is observed for the sample calcined at 600 °C.
基金Supported by the Natural Science Foundation of Shanxi Province under Grant No. 2011011003-2the Science and Technology Development Foundation of Higher Education of Shanxi Province under Grant No. 20111125
文摘It is shown that bright-dark Manakov solitons can be formed in biased guest-host photorefractive polymer when the total intensity of two components is much lower than the background illumination. The existing conditions of bright-dark Manakov solitons are discussed in detail. The intensity profiles and dynamical evolutions of solitons are presented by numericaJ methods.
基金supported by the National Natural Science Foundation of China(52173124)the Fundamental Research Funds for the Central Universities(2172019kfyXJJS070)。
文摘Recently,in-situ polymerization inside living cells has attracted much attention due to the efficient cellular internalization and elevated drug retention.However,the lack of tracking of the in-situ polymerization process and the unclear effects of polymerization on cellular functions restrict its biomedical applications.Herein,we designed a Y-shaped diacetylene-containing lipidated peptide amphiphile(YDLPA1)with positive charges,which underwent in-situ polymerization initiated by reactive oxygen species in the intracellular microenvironment.In comparison,zwitterionic YDLPA2 and negatively charged Y-DLPA3 were polymerized in aqueous solution,but cannot polymerize in the intracellular microenvironment.The polymerized Y-DLPA1 with red fluorescence provides a platform to label cells for long-term tracking studies.This polymerization reaction induced tumor cell apoptosis,increased cell viscosity and decreased cell motility,which potentially inhibited tumor metastasis and served as a novel antitumor agent.This work provides a novel strategy to track in-situ polymerization process and modulate cell biofunctions.