期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Pd-RGO-TNTs复合材料的制备及其光电催化还原CO2性能研究
1
作者 姜文静 罗贯洲 《江西化工》 2016年第2期67-72,共6页
CO_2作为温室气体的主要成员,其排放量的增加使极端恶劣天气逐年增加,控制CO_2的排放,将其还原为有机小分子并投入生产成为全球性议题。该文简要介绍了还原CO_2的技术方法,通过环保、易控的技术合成了Pd-RGO-TNTs复合材料,并对其形貌和... CO_2作为温室气体的主要成员,其排放量的增加使极端恶劣天气逐年增加,控制CO_2的排放,将其还原为有机小分子并投入生产成为全球性议题。该文简要介绍了还原CO_2的技术方法,通过环保、易控的技术合成了Pd-RGO-TNTs复合材料,并对其形貌和光电性能进行了表征和研究。以Pd-RGO-TNTs催化剂为阴极,以H2O为反应溶液采用光电催化还原技术在0.8V电压、紫外可见光照射下,成功将CO_2还原为CH_3OH和C_2H_5OH,实现了CO_2的资源型转换,为CO_2的治理和应用提供了新思路。 展开更多
关键词 还原CO2 Pd-RGO-TNTs复合材料 光电催化还原
下载PDF
CdSeTe NSs/TiO_2 NTs的制备及其光电催化还原CO_2的应用 被引量:5
2
作者 井华 王祜英 +4 位作者 徐金凤 睢晓娜 胡海涛 李培强 尹洪宗 《化学学报》 SCIE CAS CSCD 北大核心 2013年第3期421-426,共6页
利用水热法将CdSeTe纳米片组装到TiO2纳米管阵列上,制得CdSeTe NSs/TiO2 NTs催化剂.由扫描电子显微镜图(SEM)和高分辨透射电子显微镜图(HRTEM)可知,CdSeTe呈片状均匀平行生长于TiO2 NTs上.X射线衍射(XRD)数据表明片状CdSeTe主要沿着(100... 利用水热法将CdSeTe纳米片组装到TiO2纳米管阵列上,制得CdSeTe NSs/TiO2 NTs催化剂.由扫描电子显微镜图(SEM)和高分辨透射电子显微镜图(HRTEM)可知,CdSeTe呈片状均匀平行生长于TiO2 NTs上.X射线衍射(XRD)数据表明片状CdSeTe主要沿着(100)、(002)晶面生长.由紫外可见漫反射光谱(UV-vis DRS)得到材料的能隙为1.48 eV,X射线光电子能谱(XPS)数据得到价带位置为1.02 eV.对材料的光电催化还原性能测试发现,CdSeTe NSs/TiO2 NTs与基底TiO2 NTs相比,光照时对CO2的电流密度明显提高.利用气相色谱检测发现光电催化还原CO2的主产物为甲醇,并对其还原机理从能带匹配理论、电子传输高效性和材料的稳定性三方面进行了解释. 展开更多
关键词 CdSeTe TiO2NTs 光电催化还原 CO2 能带匹配
原文传递
TiO_2纳米管半波脉冲直流电光电催化还原Cr(Ⅵ) 被引量:2
3
作者 汪青 尚静 宋寒 《化学学报》 SCIE CAS CSCD 北大核心 2012年第4期405-410,共6页
报道了在半波脉冲直流电(h-DC)作为电压驱动下,以阳极氧化法制备的TiO2纳米管(TNT)为工作电极,紫外光光电催化(PEC)还原Cr(VI)的研究.半波脉冲直流电相比稳压直流电(DC)和交流电(AC)具有更佳的载流子分离和光电催化作用.探讨了电压大小... 报道了在半波脉冲直流电(h-DC)作为电压驱动下,以阳极氧化法制备的TiO2纳米管(TNT)为工作电极,紫外光光电催化(PEC)还原Cr(VI)的研究.半波脉冲直流电相比稳压直流电(DC)和交流电(AC)具有更佳的载流子分离和光电催化作用.探讨了电压大小、频率及电解质NaCl浓度对Cr(VI)催化还原反应的影响.TNT光电催化和电催化还原Cr(VI)效率随外加电压和频率的增大而增大,但是频率过高对反应有一定的抑制作用.电解质NaCl对反应的影响不显著,这是因为在重金属还原体系中,NaCl作为活性氯物种的母体和增强溶液导电性的作用体现得不明显. 展开更多
关键词 TIO2纳米管 CR(VI) 半波脉冲直流电 交流电 光电催化还原
原文传递
Identification of origin of insulating polymer maneuvered photoredox catalysis
4
作者 Qiao-Ling Mo Rui Xiong +5 位作者 Jun-Hao Dong Bai-Sheng Sa Jing-Ying Zheng Qing Chen Yue Wu Fang-Xing Xiao 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期109-123,共15页
Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has... Solid non-conjugated polymers have long been regarded as insulators due to deficiency of delocalizedπelectrons along the molecular chain framework.Up to date,origin of insulating polymer regulated charge transfer has not yet been uncovered.In this work,we unleash the root origin of charge transport capability of insulating polymer in photocatalysis.We ascertain that insulating polymer plays crucial roles in fine tuning of electronic structure of transition metal chalcogenides(TMCs),which mainly include altering surface electron density of TMCs for accelerating charge transport kinetics,triggering the generation of defect over TMCs for prolonging carrier lifetime,and acting as hole-trapping mediator for retarding charge recombination.These synergistic roles contribute to the charge transfer of insulating polymer.Our work opens a new vista of utilizing solid insulating polymers for maneuvering charge transfer toward solar energy conversion. 展开更多
关键词 Insulating polymer Charge transfer Photoredox catalysis POLYELECTROLYTE SELF-ASSEMBLY
下载PDF
铂修饰花状石墨烯催化还原CO_2反应
5
作者 程军 玄晓旭 +2 位作者 王珍懿 周俊虎 岑可法 《工程热物理学报》 EI CAS CSCD 北大核心 2018年第4期893-898,共6页
为了利用太阳能将CO_2选择性转化为高价值化工品,首次制备了担载于泡沫铜的载铂花状石墨烯电阴极与镀铂TiO_2纳米管光阳极协同光电还原CO_2。阴极催化剂的SEM图显示,载铂石墨烯呈现明显的花状结构,而阳极载铂二氧化钛纳米管的XRD图显示... 为了利用太阳能将CO_2选择性转化为高价值化工品,首次制备了担载于泡沫铜的载铂花状石墨烯电阴极与镀铂TiO_2纳米管光阳极协同光电还原CO_2。阴极催化剂的SEM图显示,载铂石墨烯呈现明显的花状结构,而阳极载铂二氧化钛纳米管的XRD图显示,经过反应的二氧化钛纳米管结构稳定,表明在反应过程中二氧化钛纳米管能够稳定的提供协同催化作用。与纯光照或纯电催化还原CO_2相比,光电协同催化有效提高了CO_2还原效率,使得产物C原子转化率达到998.6 nmol/(h·cm^2)。 展开更多
关键词 铂修饰花状石墨烯 二氧化碳 光电催化还原
原文传递
Photoelectrocatalytic reduction of CO_2 into formic acid using WO_(3-x)/TiO_2 film as novel photoanode 被引量:2
6
作者 杨亚辉 解人瑞 +3 位作者 黎航 刘灿军 刘文华 占发琦 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第9期2390-2396,共7页
A novel WO3-x/TiO2 film as photoanode was synthesized for photoelectrocatalytic(PEC) reduction of CO2 into formic acid(HCOOH). The films prepared by doctor blade method were characterized with X-ray diffractometer... A novel WO3-x/TiO2 film as photoanode was synthesized for photoelectrocatalytic(PEC) reduction of CO2 into formic acid(HCOOH). The films prepared by doctor blade method were characterized with X-ray diffractometer(XRD), scanning electron microscope(SEM) and transmission electron microscope(TEM). The existence of oxygen vacancies in the WO3-x was confirmed with an X-ray photoelectron spectroscopy(XPS), and the accurate oxygen index was determined by a modified potentiometric titrimetry method. After 3h of photoelectrocatalytic reduction, the formic acid yield of the WO3-x/TiO2 film is 872 nmol/cm^2, which is 1.83 times that of the WO3/TiO2 film. The results of PEC performance demonstrate that the introduction of WO3-x nanoparticles can improve the charge transfer performance so as to enhance the performance of PEC reduction of CO2 into formic acid. 展开更多
关键词 photoelectrocatalytic reduction CO2 formic acid WO3-x TiO2 film photoanode
下载PDF
Photoelectrocatalytic CO2 reduction based on metalloporphyrin-modified TiO2 photocathode 被引量:4
7
作者 Yapeng Dong Rong Nie +4 位作者 Jixian Wang Xiaogang Yu Pengcheng Tu Jiazang Chen Huanwang Jing 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第8期1222-1230,共9页
The conversion of CO2 and water to value-added chemicals under sunlight irradiation, especially by photoelectrocatalytic reduction process, is always a dream for human beings. A new artificial photosynthesis system co... The conversion of CO2 and water to value-added chemicals under sunlight irradiation, especially by photoelectrocatalytic reduction process, is always a dream for human beings. A new artificial photosynthesis system composed of a metalloporphyrin-functionalized TiO2 photocathode and BiVO4 photoanode can efficiently transform CO2 and water to methanol, which is accompanied by oxygen release. This photoelectrocatalytic system smoothly produces methanol at a rate of 55.5 μM h^–1 cm^– 2, with 0.6 V being the membrane voltage in plants. The production of hydrogen can also be observed when the voltage is more than 0.75 V, due to photocatalysis. Our results evidently indicate that the molecules of metalloporphyrin attached onto the surface of anatase (TiO2) behave as chlorophyll, NADP, and Calvin cycle in plant cells. 展开更多
关键词 Artificial photosynthesis Carbon dioxide reduction PHOTOELECTROCATALYSIS METALLOPORPHYRIN Titanium dioxide
下载PDF
Co-MOF as an electron donor for promoting visible-light photoactivities of g-C3N4 nanosheets for CO2 reduction 被引量:13
8
作者 Qiuyu Chen Sijia Li +4 位作者 Hongyi Xu Guofeng Wang Yang Qu Peifen Zhu Dingsheng Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第3期514-523,共10页
A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in th... A possible mechanism for boosting the visible-light photoactivities of graphitic carbon nitride(g-C3N4)nanosheets for CO2 reduction via coupling with the electron donor Co-metal-organic framework(MOF)is proposed in this study.Specifically,Co-MOF as an electron donor is capable of transferring the photogenerated electrons in the lowest unoccupied molecular orbital(LUMO)to the conduction band of g-C3N4 to facilitate charge separation.As expected,the prepared Co-MOF/g-C3N4 nanocomposites display excellent visible-light-driven photocatalytic CO2 reduction activities.The CO production rate of 6.75μmol g–1 h–1 and CH4 evolution rate of 5.47μmol g–1 h–1 are obtained,which are approximately 2 times those obtained with the original g-C3N4 under the same conditions.Based on a series of analyses,it is shown that the introduction of Co-MOF not only broadens the range of visible-light absorption but also enhances the charge separation,which improves the photocatalytic activity of g-C3N4 to a higher level.In particular,the hydroxyl radical(·OH)experiment was operated under 590 nm(single-wavelength)irradiation,which further proved that the photogenerated electrons in the LUMO of Co-MOF can successfully migrate to g-C3N4.This work may provide an important strategy for the design of highly efficient g-C3N4-based photocatalysts for CO2 reduction. 展开更多
关键词 Co-MOF g-C3N4 nanosheets Charge separation Visible-light photoactivity Photocatalytic CO2 conversion
下载PDF
Construction of efficient active sites through cyano‐modified graphitic carbon nitride for photocatalytic CO_(2) reduction 被引量:4
9
作者 Fang Li Xiaoyang Yue +2 位作者 Haiping Zhou Jiajie Fan Quanjun Xiang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第9期1608-1616,共9页
The active site amount of photocatalysts,being the key factors in photocatalytic reactions,directly affects the photocatalytic performance of the photocatalyst.Pristine graphitic carbon nitride(g‐C_(3)N_(4))exhibits ... The active site amount of photocatalysts,being the key factors in photocatalytic reactions,directly affects the photocatalytic performance of the photocatalyst.Pristine graphitic carbon nitride(g‐C_(3)N_(4))exhibits moderate photocatalytic activity due to insufficient active sites.In this study,cyano‐modified porous g‐C_(3)N_(4)nanosheets(MCN‐0.5)were synthesized through molecular self‐assembly and alkali‐assisted strategies.The cyano group acted as the active site of the photocatalytic reaction,because the good electron‐withdrawing property of the cyano group promoted carrier separation.Benefiting from the effect of the active sites,MCN‐0.5 exhibited significantly enhanced photocatalytic activity for CO2 reduction under visible light irradiation.Notably,the photocatalytic activity of MCN‐0.5 was significantly reduced when the cyano groups were removed by hydrochloric acid(HCl)treatment,further verifying the role of cyano groups as active sites.The photoreduction of Pt nanoparticles provided an intuitive indication that the introduction of cyano groups provided more active sites for the photocatalytic reaction.Furthermore,the controlled experiments showed that g‐C_(3)N_(4)grafted with cyano groups using melamine as the precursor exhibited enhanced photocatalytic activity,which proved the versatility of the strategy for enhancing the activity of g‐C_(3)N_(4)via cyano group modification.In situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations were used to investigate the mechanism of enhanced photocatalytic activity for CO2 reduction by cyano‐modified g‐C_(3)N_(4).This work provides a promising route for promoting efficient solar energy conversion by designing active sites in photocatalysts. 展开更多
关键词 Graphitic carbon nitride Cyano group modification Active sites Electron acceptor Porous structure Photocatalytic CO2 reduction
下载PDF
“Electron collector”Bi_(19)S_(27)Br_(3)nanorod‐enclosed BiOBr nanosheet for efficient CO_(2) photoconversion
10
作者 Junze Zhao Min Xue +6 位作者 Mengxia Ji Bin Wang Yu Wang Yingjie Li Ziran Chen Huaming Li Jiexiang Xia 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第5期1324-1330,共7页
Although CO_(2)photoreduction is a promising method for solar‐to‐fuel conversion,it suffers from low charge transfer efficiency of the photocatalysts.To improve the CO_(2)photoreduction performance,introduction of e... Although CO_(2)photoreduction is a promising method for solar‐to‐fuel conversion,it suffers from low charge transfer efficiency of the photocatalysts.To improve the CO_(2)photoreduction performance,introduction of electron‐accumulated materials on the photocatalyst surface is considered an effective method.In this study,the Bi_(19)S_(27)Br_(3)/BiOBr composites were designed and synthesized.The Bi19S27Br3 nanorod in this photocatalytic system acts as an electron‐accumulated active site for extracting the photogenerated electrons on the BiOBr surface and for effectively activating the CO2 molecules.As a result,Bi_(19)S_(27)Br_(3)/BiOBr composites exhibit the higher charge carrier transfer efficiency and further improves the CO_(2)photoreduction performance relative to that of pure Bi_(19)S_(27)Br_(3)and BiOBr.The rate of CO formation using Bi_(19)S_(27)Br_(3)/BiOBr‐5 is about 8.74 and 2.40 times that using Bi_(19)S_(27)Br_(3)and BiOBr,respectively.This work provides new insights for the application of Bi_(19)S_(27)Br_(3)as an electron‐accumulating site for achieving high photocatalytic CO2 reduction performance in the future. 展开更多
关键词 Bi_(19)S_(27)Br_(3) BiOBr CO_(2)photoreduction Electron‐accumulated material Charge transfer
下载PDF
Efficient development of Type-Ⅱ TiO_2 heterojunction using electrochemical approach for an enhanced photoelectrochemical water splitting performance
11
作者 Yuanxing Fang Yiwen Ma Xinchen Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第3期438-445,共8页
Type‐II‐heterojunction TiO2nanorod arrays(NAs)are achieved by a combination of reduced and pristine TiO2NAs through a simple electrochemical reduction.The heterojunction‐structured TiO2NAs exhibit an enhanced photo... Type‐II‐heterojunction TiO2nanorod arrays(NAs)are achieved by a combination of reduced and pristine TiO2NAs through a simple electrochemical reduction.The heterojunction‐structured TiO2NAs exhibit an enhanced photo‐efficiency,with respect to those of pristine TiO2NAs and completely reduced black TiO2.The improved efficiency can be attributed to a synergistic effect of two contributions of the partially reduced TiO2NAs.The light absorption is significantly increased,from theUV to the visible spectrum.Moreover,the type II structure leads to enhanced separation and transport of the electrons and charges.The proposed electrochemical approach could be applied to various semiconductors for a control of the band structure and improved photoelectrochemical performance. 展开更多
关键词 Type II heterojunction structure Photoelectrochemical water splitting TIO2 Electrochemical reduction MODIFICATION
下载PDF
Light-induced halogen defects as dynamic active sites for CO_(2) photoreduction to CO with 100%selectivity 被引量:3
12
作者 Xian Shi Xing'an Dong +2 位作者 Ye He Ping Yan Fan Dong 《Science Bulletin》 SCIE EI CSCD 2022年第11期1137-1144,共8页
Dynamic defects on halide perovskite materials,caused by ion dissociation and migration under light illumination,typically result in undesirable energy dissipation and limited energy conversion efficiency.However,in t... Dynamic defects on halide perovskite materials,caused by ion dissociation and migration under light illumination,typically result in undesirable energy dissipation and limited energy conversion efficiency.However,in this work,we demonstrated that dynamic halogen defects generated by the same process in bismuth oxyhalide(Bi_(5)O_(7)Cl)materials can act as active sites to promote charge separation and photocatalytic efficiency.Mechanistic studies and density functional theory calculations revealed that dynamic Cl defects affected the electronic structure of Bi_(5)O_(7)Cl and photocatalytic CO_(2)reduction process.As active sites,these defects promoted charge transfer,leading to the activation of adsorbed CO_(2)molecules and reduction of the energy barrier of the rate-determining step.Thus,CO_(2)was spontaneously converted into COOH−intermediate and finally reduced to CO with a high efficiency of 108.60μmol g^(−1) and selectivity of 100%after 4-h of CO_(2)photoreduction.This work is highly instructive and valuable to the exploration of dynamic defects on halide-containing materials applied in solar energy conversion. 展开更多
关键词 Dynamic Cl defects Bi_(5)O_(7)Cl Photocatalytic CO_(2)reduction SELECTIVITY Solar energy conversion
原文传递
Tungsten bronze Cs0.33WO3 nanorods modified by molybdenum for improved photocatalytic CO2 reduction directly from air 被引量:5
13
作者 Lian Yi Wenhui Zhao +3 位作者 Yanhong Huang Xiaoyong Wu Jinlong Wang Gaoke Zhang 《Science China Materials》 SCIE EI CSCD 2020年第11期2206-2214,共9页
Photocatalytic CO2 reduction is thought to be a promising strategy in mitigating the energy crisis and several other environmental problems.Hence,modifying or developing suitable semiconductors with high efficiency of... Photocatalytic CO2 reduction is thought to be a promising strategy in mitigating the energy crisis and several other environmental problems.Hence,modifying or developing suitable semiconductors with high efficiency of photocatalytic CO2 reduction property has become a topic of interest to scientists.In this study,a series of Mo-modified Cs0.33WO3 tungsten bronze were prepared using a"watercontrollable releasing"solvothermal method to produce effective photocatalytic CO2 reduction performance.Interestingly,Mo atoms replaced W partially within the hexagonal crystal structure,leading to a significant increase in photocatalytic CO2 reduction activity of Cs0.33WO3.The 5%Modoped compound displayed the best performance,with the production yield rates of 7.5μmol g^-1h^-1 for CO and3.0μmol g^-1h^-1 for CH3OH under low concentration of CO2 under anaerobic conditions,which is greatly higher than those of pure Cs0.33WO3(3.2μmol g^-1h^-1 for CO and 1.2μmol g^-1h^-1 for CH3OH)and Mo-doped W18O49(1.5μmol g^-1h^-1for CO and 0μmol g^-1h^-1 for CH3OH).More importantly,the as-prepared Mo-doped Cs0.33WO3 series could also induce the photocatalytic reduction of CO2 directly from the air in the presence of oxygen,which is beneficial for practical applications.The superior photocatalytic performance of Mo-doped Cs0.33WO3 series over the popular reduced WO3 may be due to the increase in light absorption induced by the localized surface plasmon resonance(LSPR)effect of Mo5+,large improved charge separation ability,and the co-effect of Mo and Cs in crystal.This study provides a simple strategy for designing highly efficient photocatalysts in low concentration of CO2 reduction. 展开更多
关键词 CO2reduction charge separation Cs0.33WO3 low concentration photocatalytic performance
原文传递
Boosted charge transfer and photocatalytic CO_(2) reduction over sulfurdoped C_(3)N_(4) porous nanosheets with embedded SnS_(2)-SnO_(2) nanojunctions 被引量:4
14
作者 Xi Chen Yajie Chen +4 位作者 Xiu Liu Qi Wang Longge Li Lizhi Du Guohui Tian 《Science China Materials》 SCIE EI CAS CSCD 2022年第2期400-412,共13页
Two-dimensional porous nanosheet heterostructure materials,which combine the advantages of both architecture and components,are expected to feature a significant photocatalytic performance toward CO_(2) conversion int... Two-dimensional porous nanosheet heterostructure materials,which combine the advantages of both architecture and components,are expected to feature a significant photocatalytic performance toward CO_(2) conversion into useful fuels.Herein,we provide a facile strategy for fabricating sulfur-doped C_(3)N_(4) porous nanosheets with embedded SnO_(2)-SnS_(2) nanojunctions(S-C_(3)N_(4)/SnO_(2)-SnS_(2))via liquid impregnation-pyrolysis and subsequent sulfidation treatment using a layered supramolecular structure as the precursor of C_(3)N_(4).A hexagonal layered supramolecular structure was first prepared as the precursor of C_(3)N_(4).Then Sn^(4+) ions were intercalated into the supramolecular interlayers through the liquid impregnation method.The subsequent annealing treatment in air simultaneously realized the fabrication and efficient exfoliation of layered C_(3)N_(4) porous nanosheets.Moreover,SnO_(2) nanoparticles were formed and embedded in situ in the porous C_(3)N_(4) nanosheets.In the following sulfidation process under a nitrogen atmosphere,sulfur powder can react with SnO_(2) nanoparticles to form SnO_(2)-SnS_(2) nanojunctions.As expected,the exfoliation of sulfur-doped C_(3)N_(4) porous nanosheets and ternary heterostructure construction could be simultaneously achieved in this work.Sulfur-doped C_(3)N_(4) porous nanosheets with embedded SnO_(2)-SnS_(2) nanojunctions featured abundant active sites,enhanced visible light absorption,and efficient interfacial charge transfer.As expected,the optimized S-C_(3)N_(4)/SnO_(2)-SnS_(2) achieved a much higher gas-phase photocatalytic CO_(2) reduction performance with high yields of CO(21.68μmol g^(−1)h^(−1))and CH_(4)(22.09μmol g^(−1)h^(−1))compared with the control C_(3)N_(4),C_(3)N_(4)/SnO_(2),and S-C_(3)N_(4)/SnS_(2) photocatalysts.The selectivity of CH_(4) reached 80.30%.Such a promising synthetic strategy can be expected to inspire the design of other robust C_(3)N_(4)-based porous nanosheet heterostructures for a broad range of applications. 展开更多
关键词 sulfur-doped C_(3)N_(4) porous nanosheets SnO2-SnS_(2)nanojunctions tunable composition CO_(2)photoreduction
原文传递
Recent progress on advanced design for photoelectrochemical reduction of CO_2 to fuels 被引量:25
15
作者 Ning Zhang Ran Long +1 位作者 Chao Gao Yujie Xiong 《Science China Materials》 SCIE EI CSCD 2018年第6期771-805,共35页
The energy crisis and global warming become severe issues. Solar-driven CO2 reduction provides a promising route to confront the predicaments, which has received much attention. The photoelectrochemical(PEC) process... The energy crisis and global warming become severe issues. Solar-driven CO2 reduction provides a promising route to confront the predicaments, which has received much attention. The photoelectrochemical(PEC) process,which can integrate the merits of both photocatalysis and electrocatalysis, boosts splendid talent for CO2 reduction with high efficiency and excellent selectivity. Recent several decades have witnessed the overwhelming development of PEC CO2 reduction. In this review, we attempt to systematically summarize the recent advanced design for PEC CO2 reduction. On account of basic principles and evaluation parameters, we firstly highlight the subtle construction for photocathodes to enhance the efficiency and selectivity of CO2 reduction, which includes the strategies for improving light utilization, supplying catalytic active sites and steering reaction pathway.Furthermore, diversiform novel PEC setups are also outlined.These exploited setups endow a bright window to surmount the intrinsic disadvantages of photocathode, showing promising potentials for future applications. Finally, we underline the challenges and key factors for the further development of PEC CO2 reduction that would enable more efficient designs for setups and deepen systematic understanding for mechanisms. 展开更多
关键词 PHOTOELECTROCATALYSIS CO2 reduction light utilization SEMICONDUCTOR SELECTIVITY
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部