提供了一种快速制备氧化石墨烯(GO)薄膜的方法,并通过调节GO薄膜的含氧量来调控其能级结构.采用阳极电泳及阴极电化学还原联用的方法在F掺杂Sn O2(FTO)导电玻璃上制备出不同层数及含氧量的GO薄膜,并通过扫描电镜(SEM)、X射线衍射(XRD)...提供了一种快速制备氧化石墨烯(GO)薄膜的方法,并通过调节GO薄膜的含氧量来调控其能级结构.采用阳极电泳及阴极电化学还原联用的方法在F掺杂Sn O2(FTO)导电玻璃上制备出不同层数及含氧量的GO薄膜,并通过扫描电镜(SEM)、X射线衍射(XRD)、紫外可见(UV-Vis)光谱、X射线光电子能谱(XPS)、拉曼光谱及电化学分析对样品进行表征.用20-350 s不同时间电泳沉积得到层数约为77-570层的GO薄膜.经过不同时间阴极还原的GO薄膜的禁带宽度为1.0-2.7 e V,其导带位置及费米能级也随之改变.GO作为p型半导体,与FTO导电膜之间会形成p-n结,在光强为100 m W·cm-2的模拟太阳光照射下,电泳300 s且电化学还原120 s时GO薄膜阳极光电流密度达到5.25×10-8A·cm-2.展开更多
A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and c...A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed.展开更多
Nanoscale Sb doped titanium dioxide thin films photocatalyst (Ti1-xSbO2) were obtained from dip-coating sol-gel method. The influence of dopant Sb density on the crystal structure and the phase transformation of the...Nanoscale Sb doped titanium dioxide thin films photocatalyst (Ti1-xSbO2) were obtained from dip-coating sol-gel method. The influence of dopant Sb density on the crystal structure and the phase transformation of the thin tilms were characterized by X-ray diffraction (XRD) and Raman spectra. The results of XRD showed that as prepared lilms were not only in anatase state but also in brookite. The crystalline size was estimated to be around 13.3-20 nm. Raman spectra indicated there coexisted other phases and a transformation from brookite to anatase in the samples doped with 0.2% Sb. After doping a proper amount of Sb, the cryst,allization rate and the content of the anatase Ti1-x, SbO2 in the thin films was clearly enhanced because Sb replaced part. of the Ti of TiO2 in the thin films. The anode current density (photocurrent density) and the first order reaction speed constant (k) of t.hin films doped with 0.2% Sb reached 42.49 μA/cm^2 and 0.171 h/cm^2 under 254 nm UV illumination, respectively, which is about 11 times and 2 times that of the non doped TiO2 anode prepared by the same method respectively.展开更多
The change of light output power of LEDs based on A1GalnP heterostructures with multiple quantum wells (590 nm and 630 nm) under irradiation by fast neutrons depends on the operating current density. It can be disti...The change of light output power of LEDs based on A1GalnP heterostructures with multiple quantum wells (590 nm and 630 nm) under irradiation by fast neutrons depends on the operating current density. It can be distinguished the regions of high, average and low electron injection. Operating current, this corresponds to the position of the boundary between the selected levels of the electron injection, increases with increasing neutron fluence. The final stage of the reducing process of the light output power under irradiation is the regime of low electron injection. The relative change in light output power depends on the operating current (operating current density) and can be described by a fairly simple equation. Established relations predict radiation resistance of LEDs, and it makes the most rational justification of operating modes of light-emitting diodes in terms of radiation resistance.展开更多
文摘提供了一种快速制备氧化石墨烯(GO)薄膜的方法,并通过调节GO薄膜的含氧量来调控其能级结构.采用阳极电泳及阴极电化学还原联用的方法在F掺杂Sn O2(FTO)导电玻璃上制备出不同层数及含氧量的GO薄膜,并通过扫描电镜(SEM)、X射线衍射(XRD)、紫外可见(UV-Vis)光谱、X射线光电子能谱(XPS)、拉曼光谱及电化学分析对样品进行表征.用20-350 s不同时间电泳沉积得到层数约为77-570层的GO薄膜.经过不同时间阴极还原的GO薄膜的禁带宽度为1.0-2.7 e V,其导带位置及费米能级也随之改变.GO作为p型半导体,与FTO导电膜之间会形成p-n结,在光强为100 m W·cm-2的模拟太阳光照射下,电泳300 s且电化学还原120 s时GO薄膜阳极光电流密度达到5.25×10-8A·cm-2.
文摘A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed.
文摘Nanoscale Sb doped titanium dioxide thin films photocatalyst (Ti1-xSbO2) were obtained from dip-coating sol-gel method. The influence of dopant Sb density on the crystal structure and the phase transformation of the thin tilms were characterized by X-ray diffraction (XRD) and Raman spectra. The results of XRD showed that as prepared lilms were not only in anatase state but also in brookite. The crystalline size was estimated to be around 13.3-20 nm. Raman spectra indicated there coexisted other phases and a transformation from brookite to anatase in the samples doped with 0.2% Sb. After doping a proper amount of Sb, the cryst,allization rate and the content of the anatase Ti1-x, SbO2 in the thin films was clearly enhanced because Sb replaced part. of the Ti of TiO2 in the thin films. The anode current density (photocurrent density) and the first order reaction speed constant (k) of t.hin films doped with 0.2% Sb reached 42.49 μA/cm^2 and 0.171 h/cm^2 under 254 nm UV illumination, respectively, which is about 11 times and 2 times that of the non doped TiO2 anode prepared by the same method respectively.
文摘The change of light output power of LEDs based on A1GalnP heterostructures with multiple quantum wells (590 nm and 630 nm) under irradiation by fast neutrons depends on the operating current density. It can be distinguished the regions of high, average and low electron injection. Operating current, this corresponds to the position of the boundary between the selected levels of the electron injection, increases with increasing neutron fluence. The final stage of the reducing process of the light output power under irradiation is the regime of low electron injection. The relative change in light output power depends on the operating current (operating current density) and can be described by a fairly simple equation. Established relations predict radiation resistance of LEDs, and it makes the most rational justification of operating modes of light-emitting diodes in terms of radiation resistance.