人群密度估计在智能安全防范领域具有重要的应用价值。针对人群密度估计在二维图像中视角变化呈现较大差异、特征空间信息丢失、尺度特征和人群特征提取困难等问题,提出了一种多特征信息融合的人群密度估计方法。该方法通过注意力机制...人群密度估计在智能安全防范领域具有重要的应用价值。针对人群密度估计在二维图像中视角变化呈现较大差异、特征空间信息丢失、尺度特征和人群特征提取困难等问题,提出了一种多特征信息融合的人群密度估计方法。该方法通过注意力机制引导的空间注意力透视(Perspective of spatial attention,PSA)方法,对图像多视角信息进行了有效信息编码,获取了特征图的空间全局上下文信息,弱化了视角变化带来的影响;而后通过多尺度信息聚合(Multi-Scale Information Aggregation,MSIA)方法,利用多尺度非对称卷积与不同膨胀率的空洞卷积进行了有效融合,获取了较为全面的图像尺度及特征信息。最终通过细致语义特征嵌入融合的方式,补充了高层特征图的空间信息及低层特征图的语义信息,并使上下文信息与尺度信息相互补充,提高了模型的准确度与鲁棒性。采用ShanghaiTech、Mall、Worldexpo’10数据集进行了实验验证,实验结果表明,所提方法的性能较其他对比方法有一定的提升。展开更多
文摘人群密度估计在智能安全防范领域具有重要的应用价值。针对人群密度估计在二维图像中视角变化呈现较大差异、特征空间信息丢失、尺度特征和人群特征提取困难等问题,提出了一种多特征信息融合的人群密度估计方法。该方法通过注意力机制引导的空间注意力透视(Perspective of spatial attention,PSA)方法,对图像多视角信息进行了有效信息编码,获取了特征图的空间全局上下文信息,弱化了视角变化带来的影响;而后通过多尺度信息聚合(Multi-Scale Information Aggregation,MSIA)方法,利用多尺度非对称卷积与不同膨胀率的空洞卷积进行了有效融合,获取了较为全面的图像尺度及特征信息。最终通过细致语义特征嵌入融合的方式,补充了高层特征图的空间信息及低层特征图的语义信息,并使上下文信息与尺度信息相互补充,提高了模型的准确度与鲁棒性。采用ShanghaiTech、Mall、Worldexpo’10数据集进行了实验验证,实验结果表明,所提方法的性能较其他对比方法有一定的提升。