酶功能的识别对理解生命活动的机制、推进生命科学的发展有重要作用。然而现有的酶EC编号预测方法,并未充分利用蛋白质序列信息,在识别精度上仍有所不足。针对上述问题,本研究提出一种基于层级特征和全局特征的EC编号预测网络(EC number...酶功能的识别对理解生命活动的机制、推进生命科学的发展有重要作用。然而现有的酶EC编号预测方法,并未充分利用蛋白质序列信息,在识别精度上仍有所不足。针对上述问题,本研究提出一种基于层级特征和全局特征的EC编号预测网络(EC number prediction network using hierarchical features and global features,ECPN-HFGF)。该方法首先通过残差网络提取蛋白质序列通用特征,并通过层级特征提取模块和全局特征提取模块进一步提取蛋白质序列的层级特征和全局特征,之后结合两种特征信息的预测结果,采用多任务学习框架,实现酶EC编号的精确预测。计算实验结果表明,ECPN-HFGF方法在蛋白质序列EC编号预测任务上性能最佳,宏观F1值和微观F1值分别达到95.5%和99.0%。ECPN-HFGF方法能有效结合蛋白质序列的层级特征和全局特征,快速准确预测蛋白质序列EC编号,比当前常用方法预测精确度更高,能够为酶学研究和酶工程应用的发展提供一种高效的思路和方法。展开更多
针对传统全局定位方法存在对传感器要求多、计算量大的问题,提出了一种基于全局特征点匹配的移动机器人定位方法。该方法采用普通2D雷达作为传感器,在机器人建立全局地图的过程中同步地提取全局特征点,在全局定位算法中,通过建立局部地...针对传统全局定位方法存在对传感器要求多、计算量大的问题,提出了一种基于全局特征点匹配的移动机器人定位方法。该方法采用普通2D雷达作为传感器,在机器人建立全局地图的过程中同步地提取全局特征点,在全局定位算法中,通过建立局部地图和提取局部地图特征点,实时将局部地图特征点和全局地图特征点进行匹配后求解全局位姿。在两个数据集上的测试,结果优于蒙特卡罗自适应定位(adaptive Monte Carlo localization,AMCL)和Cartographer的全局定位效果,运算速度更快。结果表明,与已有的方法相比,该全局定位方法能够更快地完成全局定位和有效减少计算资源的消耗。展开更多
文摘酶功能的识别对理解生命活动的机制、推进生命科学的发展有重要作用。然而现有的酶EC编号预测方法,并未充分利用蛋白质序列信息,在识别精度上仍有所不足。针对上述问题,本研究提出一种基于层级特征和全局特征的EC编号预测网络(EC number prediction network using hierarchical features and global features,ECPN-HFGF)。该方法首先通过残差网络提取蛋白质序列通用特征,并通过层级特征提取模块和全局特征提取模块进一步提取蛋白质序列的层级特征和全局特征,之后结合两种特征信息的预测结果,采用多任务学习框架,实现酶EC编号的精确预测。计算实验结果表明,ECPN-HFGF方法在蛋白质序列EC编号预测任务上性能最佳,宏观F1值和微观F1值分别达到95.5%和99.0%。ECPN-HFGF方法能有效结合蛋白质序列的层级特征和全局特征,快速准确预测蛋白质序列EC编号,比当前常用方法预测精确度更高,能够为酶学研究和酶工程应用的发展提供一种高效的思路和方法。
文摘针对传统全局定位方法存在对传感器要求多、计算量大的问题,提出了一种基于全局特征点匹配的移动机器人定位方法。该方法采用普通2D雷达作为传感器,在机器人建立全局地图的过程中同步地提取全局特征点,在全局定位算法中,通过建立局部地图和提取局部地图特征点,实时将局部地图特征点和全局地图特征点进行匹配后求解全局位姿。在两个数据集上的测试,结果优于蒙特卡罗自适应定位(adaptive Monte Carlo localization,AMCL)和Cartographer的全局定位效果,运算速度更快。结果表明,与已有的方法相比,该全局定位方法能够更快地完成全局定位和有效减少计算资源的消耗。