A fully differential R-MOSFET-C fourth-order Bessel active lowpass filter employing fully differential operational amplifier,passive resistors,and current-steering MOS transistors as a variable resistor is proposed.T...A fully differential R-MOSFET-C fourth-order Bessel active lowpass filter employing fully differential operational amplifier,passive resistors,and current-steering MOS transistors as a variable resistor is proposed.This proposed implementation relies on the tunability of current-steering MOS transistors operating in the triode region counteracting the concert deviation of resistor in the integrated circuit manufacturing technology in orde r that the group delay of Bessel active filter could be designed accurately.The amplifier is not only with voltage common-mode negative feedback,but also with current common-mode negative feedback,which will benefit for the stability of its D C operating point.0.75μs group delay fourth-order Bessel lowpass filter,whic h is synthesized according to passive doubly terminated RLC prototype lowpass filter,demonstrates better than -65dB THD using 100kHz,2.5V pp signal in Taiwan UMC 2P2M(2-poly,2-metal)5.0V,0.5μm CMOS technology.展开更多
This paper presents a novel leapfrog signal flow graph (SFG) implementation by fully differential Op amp integrators, which combines low sensitivity, high dynamic range with simple circuit configuration. The direct ...This paper presents a novel leapfrog signal flow graph (SFG) implementation by fully differential Op amp integrators, which combines low sensitivity, high dynamic range with simple circuit configuration. The direct SFG simulation and leapfrog SFG simulation can yield integrator-based structures likewise, but both of them will lead to higher circuit complexity, noise density and sensitivity. Three Butterworth 5-order high-pass filters with a pass band edge frequency of 1.778 kHz are designed based on different SFGs. From the example, the noise density of the sim- plest leapfrog configuration is approximately 0.4 nV/Hz~/2 lower than those of the other two in the stop band, and shows the best noise density in the pass band. The sensitivity densities of two types of leapfrog filters are approxi- mately equivalent, while that of the direct SFG simulation filter is much higher. However, the pass band response of the simplest configuration is not as good as those of the other two because of two parasitic zeros (at 708 kHz, -31.6 dB and 1.59 MHz, 20.55 dB) and a parasitic pole (at 4.57 MHz, 45.5 dB).展开更多
文摘A fully differential R-MOSFET-C fourth-order Bessel active lowpass filter employing fully differential operational amplifier,passive resistors,and current-steering MOS transistors as a variable resistor is proposed.This proposed implementation relies on the tunability of current-steering MOS transistors operating in the triode region counteracting the concert deviation of resistor in the integrated circuit manufacturing technology in orde r that the group delay of Bessel active filter could be designed accurately.The amplifier is not only with voltage common-mode negative feedback,but also with current common-mode negative feedback,which will benefit for the stability of its D C operating point.0.75μs group delay fourth-order Bessel lowpass filter,whic h is synthesized according to passive doubly terminated RLC prototype lowpass filter,demonstrates better than -65dB THD using 100kHz,2.5V pp signal in Taiwan UMC 2P2M(2-poly,2-metal)5.0V,0.5μm CMOS technology.
基金Supported by Youth Research Fund of Naval Aeronautical Engineering Institute
文摘This paper presents a novel leapfrog signal flow graph (SFG) implementation by fully differential Op amp integrators, which combines low sensitivity, high dynamic range with simple circuit configuration. The direct SFG simulation and leapfrog SFG simulation can yield integrator-based structures likewise, but both of them will lead to higher circuit complexity, noise density and sensitivity. Three Butterworth 5-order high-pass filters with a pass band edge frequency of 1.778 kHz are designed based on different SFGs. From the example, the noise density of the sim- plest leapfrog configuration is approximately 0.4 nV/Hz~/2 lower than those of the other two in the stop band, and shows the best noise density in the pass band. The sensitivity densities of two types of leapfrog filters are approxi- mately equivalent, while that of the direct SFG simulation filter is much higher. However, the pass band response of the simplest configuration is not as good as those of the other two because of two parasitic zeros (at 708 kHz, -31.6 dB and 1.59 MHz, 20.55 dB) and a parasitic pole (at 4.57 MHz, 45.5 dB).